Hurricanes Accelerate Dissolved Organic Carbon Cycling in Coastal Ecosystems

Ge Yan^{1,2*}, Jessica M. Labonté³, Antonietta Quigg^{3,4}, Karl Kaiser^{2,4}

¹Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, China
²Department of Marine and Coastal Environmental Science, Texas A&M University at Galveston, United States
³Department of Marine Biology, Texas A&M University at Galveston, United States
⁴Department of Oceanography, Texas A&M University, United States
*correspondence: yange@idsse.ac.cn

Hurricane Harvey

-August 26-30, 2017

- Category 4(>130 mph)
- 93 km³ of rainwater over 5 days

R/V Trident

- five trips (T1-T5), 10 stations (S1-S10)
- surface water
- 0.2 µm filtration

Methods and approach

- dissolved organic carbon (DOC)
- dissolved lignin phenols (TDLP₉)
- dissolved enantiomeric amino acids (THAA)
- UV-VIS absorbance properties
- bacterial community composition and function

land (vascular) plants

lignin-tracer for terrigenous OC

Evolution of DOC distribution and sources

Terrigenous DOC export flux

Freshwater load to Galveston Bay $14-17 \times 10^9 \text{ m}^3$

tDOC flux = freshwater DOC × freshwater export flux

Determination of freshwater endmember DOC

Method 1: measured river DOC concentrations during the first sampling cruise Method 2: extrapolated DOC at salinity 0 using DOC/salinity relationship

The input of tDOC to Galveston Bay for the entire storm event was 87 ± 18 Gg (95% was delivered within the first week), which is equivalent to the average annual tDOC load to Galveston Bay.

tDOC source and degradation mechanism

Citation: Lu C-J, Benner R, Fichot CG, Fukuda H, Yamashita Y and Ogawa H (2016) Sources and Transformations of Dissolved Lignin Phenols and Chromophoric Dissolved Organic Matter in Otsuchi Bay, Japan.

tDOC removal

 α, β – model parameters

Freshwater endmember

-measured values in river water during first cruise Seawater endmember -DOC assumed to be 80 μM

-lignin = 0

TDLP₉-C_{sample} – fitted concentration at $f_R = 1$ TDLP₉-C_{river} – concentration of river endmember t – water residence time in years

High decay constant (~3 times) → highly labile tDOC and/or efficient removal process

Linking mineralization of tDOC to microbial community structure

Sept. 9

Sept. 16

Sept. 28

Sept. 6

Summary

