

Modelling interactions between bioturbation and mud distribution

Muriel Z.M. Brückner, C.S. Schwarz, G. Coco, M. Boechat Albernaz, A.W. Baar, and M.G. Kleinhans

Eco-engineering

- Macrobenthic organisms increase erodibility through their movement in the sediment
- Facilitated erosion affects large-scale distribution of mud and large-scale morphology

Two contrasting bioturbators:

- Sandy and dynamic environments
- Low bioturbation potential

Research question:

How large is the effect of

- a) AM
- b) CV
- c) AM & CV combined

on the mud distribution after 50 years?

- Muddy and calmer environments
- High bioturbation potential

The model is a dynamic feedback between a hydromorphological model in Delft3D (2D) and a bioturbation model in Matlab

Results: The bioturbators occur here:

AM larger extent but similar total area coverage when fractions are considered

AMCV:

- enhanced cover of AM through positive ecoengineering
- CV is reduced through competition

Export of mud by bioturbators increases

- Increasing mud export by AM, CV and AMCV compared to a reference without bioturbation
- CV has much stronger effects on mud volume and fraction
- Erosion of the supratidal leads to increasing inter- and subtidal area

© Authors. All rights reserved

Conclusions

- CV and AM have similar species coverage even with a more constraint habitat for CV
- Species CV has much stronger effects on mud volume
- Erosion of the supratidal leads to increasing intertidal and subtidal area