

Towards near-realtime computation of tsunami inundation as part of the LEXIS project

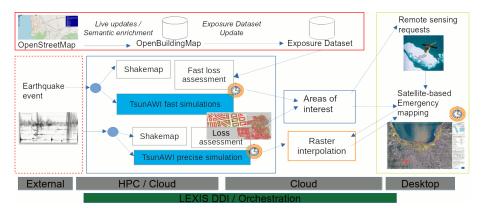
Natalja Rakowsky¹, Sven Harig¹, Alexey Androsov¹, Thierry Goubier², Hannah Neuwirth^{1,3}, Lucas Kersten^{1,4}

¹ Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany

² CEA List, DSCIN/LCYL, Gif sur Yvette Cedex, France

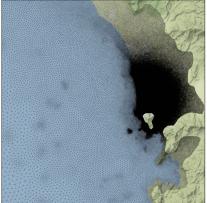
³ University of Münster, Germany ⁴ University of Göttingen, Germany

LEXTS builds an advanced engineering platform at the confluence of HPC, Cloud and Big Data. **LEXTS** develops infrastructure to enable workflows and demonstrates its abilities through three large-scale socio-economic pilots


- aeronautics
- weather & climate
- catastrophe alert systems: earthquake & tsunami

The **LX** work flow of the earthquake and tsunami pilot with the tsunami inundation simulation.

GU2020



Grid, zoom to Padang, 200m-15km resolution

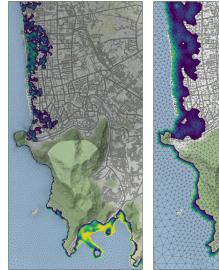
High quality tsunami simulation with inundation is compute intensive. The resolution on land should be 20m (Griffin et al. 2015*).

But how coarse can the mesh be for a reasonable estimate?

Grid, zoom to Padang, 20m-5km resolution

k doi:10.3389/feart.2015.00032

Rakowsky et al.


TsunAWI near-realtime

GU2020

Simulated inundation on fine mesh

Simulated inundation on coarse mesh

Testing with different resolutions: 200m is a good choice for a first 45 estimate of the inundation. 3.0 Left: Simulated inundation [m] of a

- hypothetical earthquake, Mw=8.8, west off Padang,
- ^{0.0} Sumatra, Indonesia.

Improvements performed in **LEX**18

- Adapt TsunAWI to the workflow: read quakeML, write raster data or netcdf with the mesh reduced to the inundated area for fast interpolation.
- Profiling. Major bottlenecks: memory bandwidth and NUMA effects vs. load inbalance in TsunAWI's OpenMP.
- Test different mesh resortings. Forsyth's algorithm outperforms the current space filling curve by approx. 10%.
- Planned: Set up automated workflow to tune time step and to remove mesh vertices on land that are not reached by any strong tsunami.
- $\bullet\,$ Planned: Reduce floating point precision double $\rightarrow\,$ single where possible.

Rakowsky et al.

EXAMPLE 1 HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

			Detailed mesh	Coarse mesh
-	Resolution	in Padang in the ocean	20m 5,000m	200m 15,000m
	Number of mesh vertices		1,242,653	231,586
	Timestep		0.15s	1.5s
	Compute time for a 2h simul.	salomon.it4i.cz, 24 threads, 2x Intel Xeon E5-2680v3	20:40min	20s
		ollie.awi.de, 36 threads, 2x Intel Xeon E5-2697v4	15:45min	15s
		lise.hlrn.de, 192 threads w. hyperthreading, 2x Intel Xeon Platinum 9242	5:04min	5s
Rako	owsky et al.	TsunAWI near-realtime EGU2020	7/9	

Conclusion

With software optimization, modern hardware, and careful model setup, real-time computation of tsunami inundation becomes feasible.

EXisgives us the chance to focus on the technical aspects.

GU2020

Thanks to all partners in LEXIS!

https://lexis-project.eu

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement 825532

