

CATCHMENTS AS REACTORS

CRC 1253

CAMPO

- groundwater divides are important
- proper delineation requires hydraulic head measurements
- piezometers are expensive
- goal: find optimal piezometer placement strategy

Jonas Allgeier¹ Ana González-Nicolás² Daniel Erdal Wolfgang **Nowak**² Olaf **Cirpka**¹

\$^o Approach **Novel Stochastic Framework**

- ensemble flow modeling
- plausibility check
- particle tracking
- optimal design routine PreDIA
 - Bayesian averaging

ill **Results** Measure in the Unknown Regions

In the place wells far from existing ones choose medium spacing IF best designs are non-trivial **公 uncertainty reduction** of > 50 %

Use the power of clicking/tapping!

Problem

CATCHMENTS AS REACTORS

Go Back To Summary

CRC 1253

CAMPOS

University of Stuttgart Germany

Jonas Allgeier¹ Ana González-Nicolás² Daniel **Erdal** Wolfgang **Nowak**² Olaf **Cirpka**¹

Delineation of Groundwater Divide

- groundwater divides...
 - separate different groundwater bodies
 - determine contaminant fate
 - need to be known for catchment water balances • can be used as model boundaries
- \rightarrow are imporant
- proper delineation...
 - is often difficult
 - (depending on hydrogeological setting)
- → requires hydraulic head measurements
- piezometers...
 - must be permitted
 - require **drilling** holes
 - need well installation
 - have to be maintained
- \rightarrow are expensive

2 km

• cannot be derived from surface water divide • needs a calibrated subsurface flow model

- goal
- strategy

figure on the left

- example

 maximize gained information • minimize number of piezometers

→ find optimal piezometer placement

 south-west Germany (Ammer/Neckar valley) • dashed line: surface water divide • solid line: modelling domain dots with edge: present wells • dots without edge: new well points → what combination of three well points is best to derive the groundwater divide?

University of Stuttgart

Novel Stochastic Framework

- stochastic modeling
 - three-dimensional
 - subsurface flow (Richards equation)
 - steady state
 - vary parameters, geometries, boundary conditions
 - take virtual measurements at all potential new locations
- → ensemble of realizations
- prefiltering
 - validate model realizations
 - compare against plausibility criteria
 - if implausible \rightarrow reject
- → ensemble of plausible realizations
- particle tracking
 - for each realization
 - initiate particles at surface
 - move along advective velocities
 - keep track of outlet locations

 \rightarrow maps of particle fate

- misclassification

figure on the left

- 50 000 realizations
- → partly large uncertainties

Preposterior Data Impact Assessor

• PreDIA: Leube et. al. (2012); Bayesian assessment of the expected data impact on prediction confidence in optimal sampling design; Water Resources Research 48, W02501; doi:10.1029/2010WR010137 • optimal experimental design tool • makes use of **Bayesian averaging** estimates uncertainty reduction... due to new measurements • metric: integrated probability of particle fate

 \rightarrow can rank piezometer configurations

• ensemble of virtual head observations • all twenty potential locations

Results

Go Back To Summary

University of Stuttgart

Measure in the Unknown Regions

- figure on the left
 - maps of particle fate misclassification
 - top: prior to analysis

• piezometers far away from existing wells perform better • medium spacing ($\approx 100 \,\mathrm{m}$) is preferred optimal designs are better than equidistant ones more piezometers
→ more information

• bottom: with three additional wells (black dots) uncertainty in groundwater divide can be reduced • ... especially close to the new wells

Submitted to Frontiers in Earth Science

