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We are interested in coupled processes in rough rock geometries, which deal with
complex geometries. They are highly non-linear and therefore computationally
expensive.

Conceptually our methods are based on the fictitious domain method and L2-
projections.

Contact problems,

Dual mortar method Thermo-fluid-structure
interaction (TFSI)
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Contact problem

I m m
ryvry

Linear elasticity (a € {m,s}) :

(u“) =C% mlulm on 2
—divo(u) = f on Q° U Q"

u;=0 onl?y, a€ {m,s}

o u)-m;=p; only, a€ {m,s} Contact conditions:
0,<0 onl, o,(u" o D) =0, (u")
u] < g

([ul = g)o,(u) = 0

or(u) =0  (no friction)
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Dual Mortar Method for Contact

The dual mortar method allows us to solve contact problems for geometries with
nonmatching surface meshes.

dual mortar for Contact

Mortar
Qm
Qm
X, Hi-

Xh(F%) oD I 8 d

Xy(T'p) ¢ mee P mee B

(uljidr =0,ieM [ [ulpudy <0, u e M*
T It

(\P(u}j)—u;f)ﬂhdy =0, f, EMh Mt=< u EM‘ J pAidy >0,V EX(F%)Jr
Tt I't

= T discrete mortar operator

Belgacem et al. 1999, The mortar finite element method for contact problems.
Wohlmuth 2000. A mortar finite element method using dual spaces for the Lagrange multiplier.
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Transformation of Contact Problem

Instead of solving a saddle point problem, we transfer the problem using the discrete
mortar operator T ,and then solve it with a semismooth Newton method.

Azz  Azm Azs ury
A = Amz A7z 0 u .= U g
Asz 0 Azz Ugs

Id - —%—-n3n’)! ,p=qgandpcS

(n;)tn; p\"p
Householder transformation: O :=o0,, = { 1Id p=qgandp eI UM
0 , else.
Idz O 0
Mortar transformation: Z = 0 Idy T
0 0 Ids
A :=(0Z)A (0Z) 1
f.— (02)f Solve i1 = arg‘];niniutAu — fluwith:u<g

Dickopf and Krause 2009. Efficient simulation of multi-body contact problems on complex geometries: A flexible decomposition approach
using constrained minimization.
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Contact Problem - Results
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Planta et al. 2019, Solution of contact problems between rough body surfaces with non matching meshes using a dual mortar method.
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Fluid-structure interaction (FSI)

To simulate FSI we use a fictitious domain method, where the solid is immersed into the
fluid. To map quantities between the solid and the fluid we need L2-projections, as the
two meshes are nonmatching. The system is solved iteratively.

add force term to L

T solid
force term solid “s
’Ifsi
enforce i, =v,
Fluid on Q= Q,NQ

- Linear elasticity and linearized contact for solid
- Dynamic formulation

- Incompressible Navier Stokes equations for fluid
- Contact and transfer with L2-projections

- P4-P+ for discretization of fluid problem

- P, for discretization of solid problem

Planta et al. 2020. Modelling of hydro-mechanical processes in heterogeneous fracture intersections using a fictitious domain method with
variational transfer operators
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Fluid-structure interaction (FSI)

We conducted benchmark
experiments in 2D and 3D. In
particular Poiseuille flow to validate
the method.
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2D channels: Top: Solution with FSI
method. Bottom: Solution with standard
Navier-Stokes FEM method.
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Comparison of Poiseuille Flow with FSI method
versus standard FEM solution.
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Fluid-structure interaction (FSI)

Intersected fracture with
contact, setup of solid and
fluid geometry:
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Fluid structure interaction (FSI)
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Planta et al. 2020. Modelling of hydro-mechanical processes in heterogeneous fracture intersections using a fictitious domain method with
variational transfer operators
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Thermo-Fluid-Structure Interaction (TFSI)

For TFSI we introduce in addition heat in the solid and the fluid, and we alter the
definition of the stress tensor of the solid.

pCs—kV - T, =pg, T, :temperature  ¢;: heat source/sink ;. stress tensor
- ] ps: density  u: displacement f: body forces
psii — divo(u,) = f ks : heat conductivity ¢,: heat capacity

The stress tensor then has an additional term to account for the
temperature:

N ﬂ . : i %k : .
o,(u) = 2ue + Atr(e)] — 2u + 30)al(T, — T*) 2 Lame parameters ¢€: strain TS stress free temp

a. coefficient of linear thermal expansion
In the fluid, the temperature evolves according to: pfcf(Tf +VvVTy) — kaZTf —o;:Vv=0

Where in general the subscriptf denotes fluid quantities, and  the fluid velocity.

We then set the following condition on the interface between the solid and the fluid to
allow for temperature exchange: T, =T, on Qg :=QcN Q!

\Hassanjanikhoshkroud et al. 2020. Thermo-Fluid-Structure Interaction Based on the Fictitious Domain Method: Application to Dry Rock
Simulations
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Thermo-Fluid-Structure Interaction (TFSI)

We applied the method to a 2D channel and simulated heat transfer at different fluid
velocities.

H=0.1cm

\\\\\\\\\\\\\\\\\\\\

\ T — 350 K L =0.8cm

The results show, that the TFSI method can replicate the transfer from a diffusive to a
convective transfer regime.

| 11
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(d) slow fluid, v, =5cm/s,t=0.75s
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(¢c) fast fluid, v,, = 500 cm/s,t=0.25s (f) fast fluid, v,, = 500 cm/s,t=0.75s
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Hassanjanikhoshkroud et al. 2020. Thermo-Fluid-Structure Interaction Based on the Fictitious Domain Method: Application to Dry Rock
Simulations
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L2-Projections: how they are defined

Definition:
V, W, M finite dimensional functions spaces on Q, with dimensions n",n", n",

bases (1")iz1 v, (xle)j:L“_,nw, Azt v Where M is a multiplier space with n" =n

The L2-projection 1 : V - W is defined such that

J(H(v)—v)/lda)=0 VieM

Q

/
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L2-Projections: how the discrete operator T is assembled using the basis
representation of the surrounding space:

Using the basis representations of v, w :=Il(v), 4 , the previous Eq. becomes:

I’lW I’lV
JZ wAl oM da = JZ vdY WM dw, k=1,..ny,
o =1 o =1
Using
D = (di)ik=1.. n"w dig := [Cbiwh Cb,iw "do B = Bii=1,.. .V je=1,.. 0" Djge 1= J¢th Cblﬁw "dow,
Q Q

W= Wimt e V= iz % weget: w=D"'Bv:=Tv

Zulian and Krause 2016. A Parallel Approach to the Variational Transfer of Discrete Fields between Arbitrarily Distributed Unstructured Finite
Element Meshes.
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Implementation/Software

User Interface
FEM discretization
Test harness
Thermoelasticity

MOOSE

PETSc/
libMesh

Nonlinear
Solvers

PETSc
SNES

MOONOoLith

UTOPIA PETSc/
libMesh

L2-Projections

Semismooth Newton for
Contact, change of
basis.
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Summary

- Can replicate nonlinear closing behaviour of fracture

- Can replicate channeling in closing fracture

- Can replicate transition from diffusive to convective heat transfer

- L2-projections were used for (1) coupling in FSI, TFSI, (2) contact problem
- Approach is adaptable and extendable

Future work

- Augment contact formulation with friction

- Augment contact formulation with stress free deformations
- Nonlinear solid

- 3D TSFI simulations
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