

GLORIA observations of pollution tracers C_2H_6 , C_2H_2 , HCOOH, and PAN in the North Atlantic UTLS region

¹Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Karlsruhe, Germany (gerald.wetzel@kit.edu) ²Research centre Jülich GmbH, Institute of Energy and Climate Research - Stratosphere (IEK-7), Jülich, Germany ³Karlsruhe Institute of Technology, Steinbuch Centre for Computing, Karlsruhe, Germany

Summary

The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an imaging Fourier Transform Spectrometer (iFTS) using a 2-dimensional detector array to record emission spectra in the mid-infrared region with high spectral resolution. We report results from the Wavedriven ISentropic Exchange (WISE) aircraft campaign carried out from Shannon (IRL) in autumn 2017.

- Pollutant species like C_2H_6 , C_2H_2 , HCOOH, and PAN which are produced at distinct source regions near the ground and transported to remote regions due to their atmospheric lifetime of several weeks were observed with high vertical resolution.
- Enhanced volume mixing ratios of these molecules were detected along some parts of the flight track (mainly during flight #2) in the upper troposphere and lowermost stratosphere (UTLS). The origin of this pollution is mainly Asia and North America
- Simulations of the Chemistry Climate Model EMAC and the ECMWF CAMS reanalysis also show enhanced values in the region GLORIA does. However, apart from PAN (EMAC), simulations by CAMS and, to a lesser extent, EMAC, underestimate the elevated amount of observed VMR features.

GLORIA instrument

Instrument: Cryogenic limb and nadir emission imaging FTIR spectrometer^{1,2}. GLORIA is designed to operate on various high altitude research platforms (aircraft and stratospheric balloons).

Spectral coverage: 750-1450 cm⁻¹, unapodized spectral resolution: 0.0625 cm^{-1} (OPD_{max} = 8.0 cm, ~ 12 s per interferogram).

Data: Vertical profiles (limb mode) of temperature and trace gases from the middle troposphere up to flight altitude (lowermost stratosphere); vertical resolution: < 2 km; cloud index threshold³ = 2.

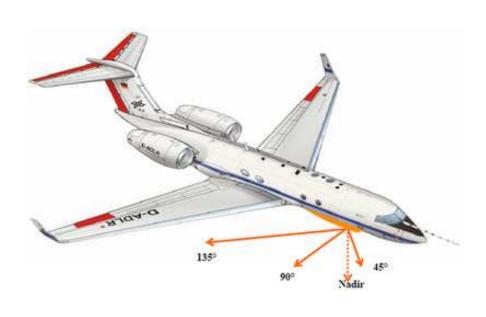


Fig. 1. The GLORIA instrument is located inside a belly pod aboard the DLR HALO aircraft.

References

¹Friedl-Vallon et al., Atmos. Meas. Tech., 7, 2014. ²Kleinert et al., Atmos, Meas, Tech., 7, 2014, ³Spang et al., Adv. Space Res., 33, 2004. ⁴Stiller et al., J. Q. S. R. T., 72, 2002. ⁵Höpfner et al., Geophys. Res. Lett., 29, 2002. ⁶Xiao et al., J. Geophys. Res. 112, 2007. ⁷Rudolph, J. Geophys. Res., 100, 1995. ⁸Xiao et al., J. Geophys. Res. 113, 2008. ⁹Fischer et al., Atmos. Chem. Phys., 14, 2014. ¹⁰Singh, Environ. Sci. Technol., 21, 1987. ¹Glatthor et al., Atmos. Chem. Phys., 7, 2007 ¹²Mungall et al., Atmos. Chem. Phys., 18, 2018.

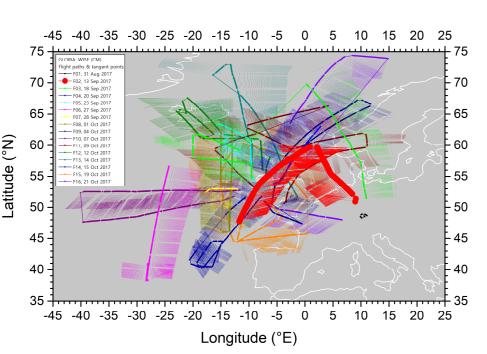


Fig. 2. Flight paths and GLORIA tangent altitudes during the WISE campaign in autumn 2017 (F02 = flight #2: red).

¹³Paulot et al., Atmos. Chem. Phys., 11, 2011 ¹⁴Millet et al., Atmos. Chem. Phys., 15, 2015. ¹⁵Roeckner et al., J. Climate, 19, 2006. ¹⁶Jöckel et al., Geosci. Model. Dev., 3, 2010 ¹⁷Dee et al., Q. J. R. Meteorol. Soc., 137, 2011 ¹⁸Atkinson et al., Atmos. Chem. Phys., 7, 2007 ¹⁹Sander et al., JPL Publ. 10-6, 2011. ²⁰Monks et al., J. Geophys. Res., 123, 2018. ²¹Inness et al., Atmos. Chem. Phys., 19, 2019. ²²Courtier et al., Q. J. R. Meteorol. Soc., 120, 1994 ²³Vogel et al., Atmos. Chem. Phys., 15, 2015. ²⁴Ploeger et al., Atmos. Chem. Phys., 17, 2017.

KIT – The Research University in the Helmholtz Association

Gerald Wetzel¹, Felix Friedl-Vallon¹, Norbert Glatthor¹, Jens-Uwe Grooß², Thomas Gulde¹, Michael Höpfner¹, Sören Johansson¹, Farahnaz Khosrawi¹, Oliver Kirner³, Anne Kleinert¹, Erik Kretschmer¹, Guido Maucher¹, Hans Nordmeyer¹, Hermann Oelhaf¹, Johannes Orphal¹, Christof Piesch¹, Björn-Martin Sinnhuber¹, Jörn Ungermann², and Bärbel Vogel²

GLORIA data analysis

Radiative transfer: Calculated with KOPRA⁴ (Karlsruhe Optimized and Precise Radiative transfer Algorithm).

Retrieval calculations: Least squares fitting procedure KOPRAFIT⁵ using a Tikhonov-Phillips regularization approach which was constrained with respect to a first derivative a priori profile of the target species.

Fitted parameters: Temperature, gases, continuum or offset and scale, wavenumber shift.

Error estimation: Random noise as well as covariance effects of fitted parameters; temperature errors; pointing inaccuracies; errors of nonsimultaneously fitted interfering gases; spectroscopic data errors (1σ) .

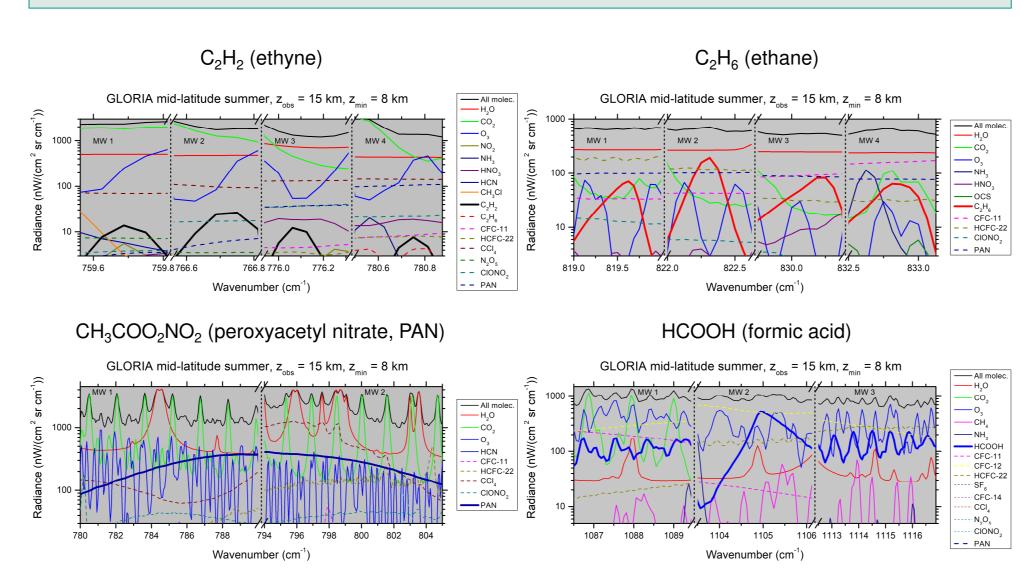
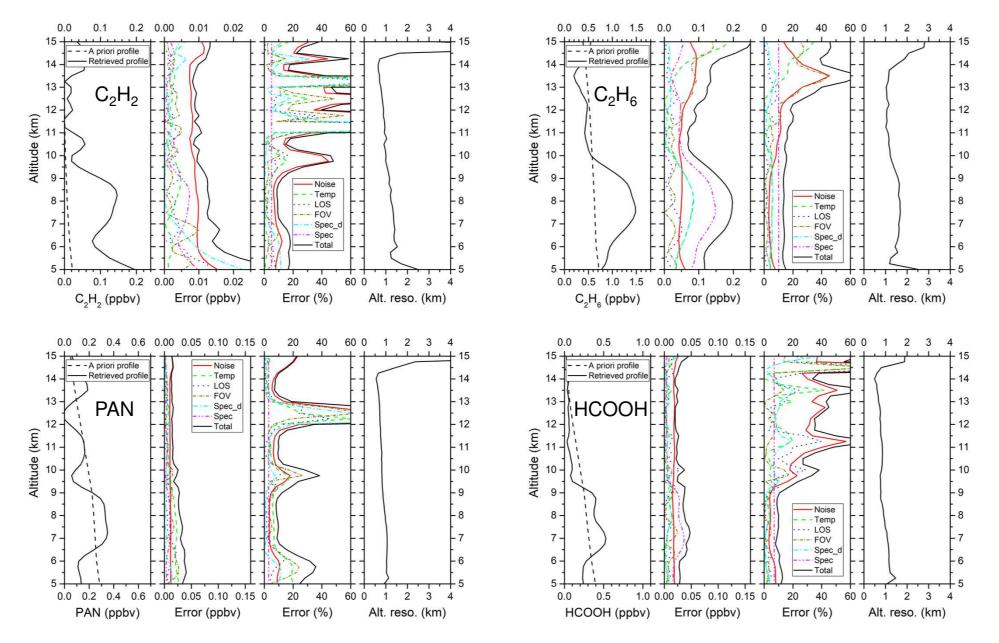
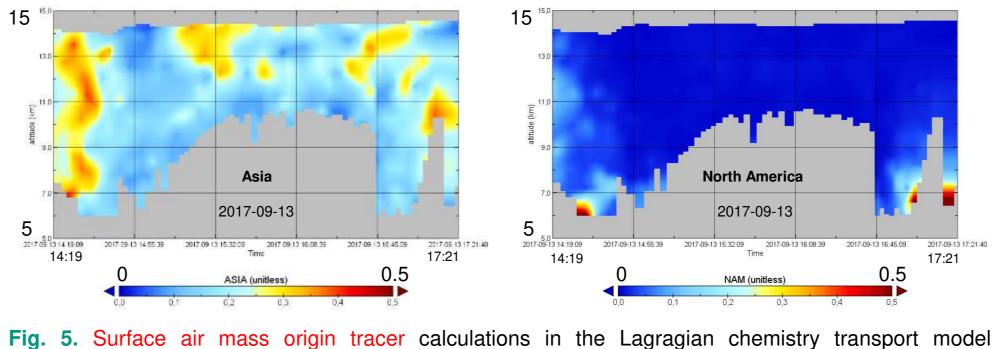


Fig. 3. Radiance calculations in different microwindows (with spectral resolution of GLORIA) for a midlatitude standard atmosphere. Emissions of individual species contributing to the combined spectrum (all molecules) are shown.




Fig. 4. Retrieved vertical VMR profiles (and a priori profiles) for flight #2 (2017-09-13) at 16:55:07 UTC together with absolute and relative errors and altitude resolution.

 C_2H_2 (ethyne): Loss: C_2H_6 (ethane): Loss:

Model simulations

- Resolution T106 (~1.1°x1.1°) with 90 hybrid p-levels up to 0.01 hPa.
- Multi-year simulation with a time step of 4 min. Nudging of model dynamics towards ERA-Interim¹⁷ analysis (below 1 hPa).
- Chemistry from the troposphere to the lower mesosphere, kinetic and photochemical data from the IUPAC¹⁸ and JPL-11¹⁹ compilations.
- Photochemical reactions of precursor substances important for the build-up of PAN⁹ were integrated.

- 3-dimensional 3-h analyses and forecasts (T255, ~1.1°x1.1°, 60 levels) of global atmospheric composition (aerosols and chemical species).
- Available meteorological and atmospheric composition observations are included in the ECMWF 4D-Var data assimilation system²².

Institute of Meteorology and Climate Research Atmospheric Trace Gases and Remote Sensing www.imk-asf.kit.edu

Sources and sinks of pollutant species

Source: combustion of biofuels, biomass- and fossil fuel burning⁶

reaction with OH⁶ Lifetime: ~ 2 weeks⁶

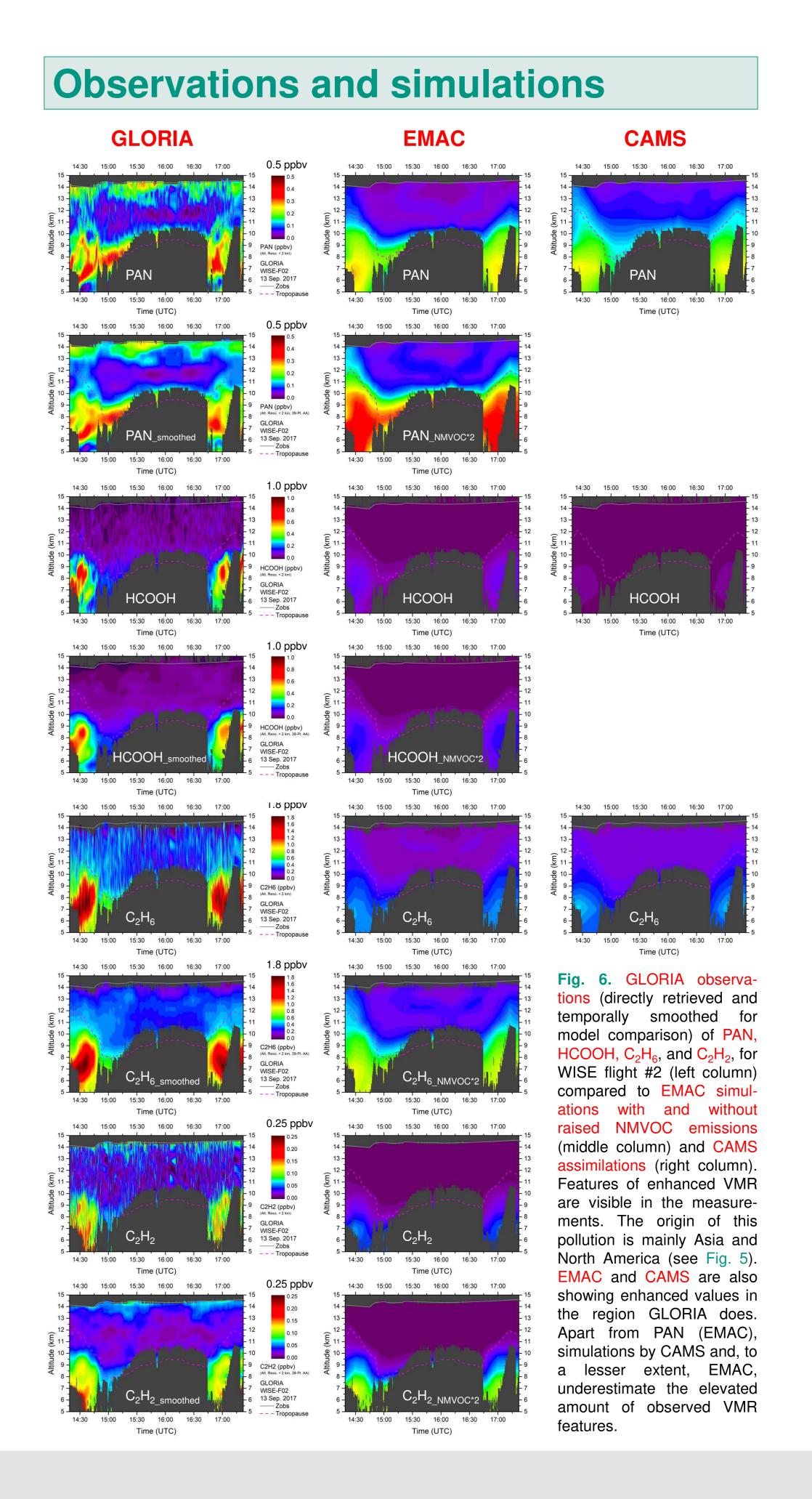
- Source: biomass burning, natural gas losses⁷, fossil fuel production and biofuel use⁸ reaction with OH⁸
- Lifetime: ~ 2 months⁷ $CH_3COO_2NO_2$ (peroxyacetyl nitrate, PAN):

$CH_3COO_2 + NO_2 + M \leftrightarrow CH_3COO_2NO_2 + M$

- Source: CH₃COO₂ (peroxyacetyl) is mainly produced by oxidation of acetaldehyde and photolysis of acetone and methylglyoxal (all directly emitted or produced from non-methane volatile organic compounds)⁹
- Loss: Thermal decomposition via (R1)⁹ Lifetime: 1 h at 298 K, a few months in the cold upper troposphere^{9,10,11}

HCOOH (formic acid):

- Source: biogenic emissions, biomass burning and fossil fuel combustion; secondary photochemical production from anthropogenic and biogenic precursors¹² Loss: wet and dry deposition and oxidation with OH¹³
- Lifetime: 1-2 days (boundary layer), few weeks (free troposphere)¹⁴


Chemistry Climate Model EMAC

- (ECHAM v5.3.02 / MESSy v2.53^{15,16} Atmospheric Chemistry)
- 2nd run: NMVOC emissions enhanced by a factor of two²⁰.

ECMWF CAMS reanalysis

(Copernicus Atmosphere Monitoring Service²¹)

CLaMS^{23,24} showing the fraction of air originating from different geographical regions on 2017-09-13.

EGU2020-6931 AS3.5 X5.252

www.kit.edu