Gypsum speleothems record the triple oxygen (δ^{17} O and δ^{18} O) and hydrogen (δ^{2} H) isotopic composition of cave dripwater: potential paleoenvironmental implications

Fernando Gazquez¹, Veronica Chiarini², Andrea Columbu², Jo De Waele², Philippe Audra³, Didier Cailhol⁴, Marco Vattano⁵, Giuliana Madonia⁵, Alena Giesche⁶, José-María Calaforra¹, and David A. Hodell⁶

¹University of Almeria, Department of Biology and Geology, Spain (f.gazquez@ual.es) ²Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy. ³Polytech'Lab, University Cote d'Azur, Nice, France. ⁴Laboratoire EDYTEM, University Savoie – Mont-Blanc, CNRS, France. ⁵Earth and Marine Science Department, University of Palermo, Italy. ⁶Godwin Laboratory for Palaeoclimate Research. Department of Earth Sciences. University of Cambridge, United Kingdom.

Rationale

- Stable isotopes in gypsum (CaSO4 · 2H₂O) hydration water can be used to **reconstruct the isotopic composition** (δ^{18} O, δ^{17} O and δ D) of the original solution, with **minor temperature** effects on water/gypsum fractionation factors.
- Gypsum (CaSO₄·2H₂O) speleothems (i.e. stalactites, stalagmites, etc.) in caves form frequently through dissolution of the gypsum host-rock by seepage water and subsequent secondary mineral re-precipitation from gypsum-saturated solutions
- How gypsum speleothems form in different caves? (evaporation always?)
- Can gypsum speleothems be used for paleoclimate reconstructions?

Gypsum speleothems in the Mediterranean region

Method

Semi-automated procedure for extracting GHW by slowly heating the sample to 400°C *in vacuo* and cryogenically trapping the evolved water. Analysis of triple oxygen and hydrogen isotopes in gypsum hydration water by CRDS

Gázquez F., Mather I., Rolfe J., Evans N. P., Herwartz D., Staubwasser M. and Hodell D. A., 2015b. Simultaneous analysis of ¹⁷O/¹⁶O, ¹⁸O/¹⁶O and ²H/¹H of gypsum hydration water by cavity ring-down laser spectroscopy. Rapid Commun. Mass Spectrom. 29, 1997–2006.

RESULTS

Emilia Romagna, Cyprus and Sicily speleothems fall on the LMWLs and have similar values to the mean isotopic composition of rainfall in the setting of the caves

Most Sorbas (Spain) speleothems describe an evaporation trajectory

*Results of Messinian (marine) gypsum are displayed for comparison

× ER dripwater ER condensation × Santa Ninfa water Santa Ninfa speleothems × Messinian gypsum Re Tiberio speleothems O Ca' Castellina speleothems O ABF speleothems × Messinian gypsum \circ Emilia Romagna Sicily 50 ²⁰ excess (per meg, V-SMOW/V-SLAP) ³⁰ 10 ³⁰ 10 ³⁰ 30 ³⁰ 10 ³⁰ 30 \bigcirc ¹⁷O_{excess} (per meg, V-SMOW/V-SLAP) 0. 01 00 02 01 01 02 000 •8 \bigcirc \bigcirc \bigcirc • \times \times \times 1SD 1SD \times × -50 -50 -3 -12 0 3 -12 -9 -6 -3 0 3 -9 -6 δ¹⁸O (‰ V-SMOW) δ¹⁸O (‰ V-SMOW) × Sorbas dripwater Sorbas rainwater Covadura speleothems Sorbas condensation 😑 Incirli speleothems \times Cyprus dripwater × Messinian gypsum O Majadas Viejas speleothems C3 speleothems × Messinian gypsum Spain Cyprus 50 ¹⁷O_{excess} (per meg, V-SMOW/V-SLAP) 00-01-01 01-01-02-02 ¹⁷O_{excess} (per meg, V-SMOW/V-SLAP) \bigcirc 30 10 × Evaporation -10 1SD 1SD -30 \bigcirc X -50 -50 -12 -3 0 -12 -9 -6 -3 0 3 -9 -6

δ¹⁸O (‰ V-SMOW)

Emilia Romagna, Cyprus and Sicily speleothems formed from water with isotope values similar to the mean of rainfall in those regions, with no signs of evaporation

> Most Sorbas (Spain) speleothems describe an evaporation trajectory

*Results of Messinian (marine) gypsum are displayed for comparison

3

δ¹⁸O (‰ V-SMOW)

Next steps

- U-Th dating of gypsum speleothems
- How subaerial gypsum speleothems can form with no evaporation? (Ostwald ripening???)
- Condensation water contributions?