
Towards 3-D seismic structure of the crust and upper mantle 
beneath Southeast Asia from adjoint waveform tomography 

Deborah Wehner, Nienke Blom and Nick Rawlinson  
University of Cambridge                                                              



Mt Kinabalu, Malaysia

Motivation

• The aim of this project is to obtain a 3-D seismic structural model of the crust and 
upper mantle beneath Southeast Asia.


• Southeast Asia is one of the most complex tectonic regions on Earth and known to 
be vulnerable to natural hazards as evidenced by frequent large earthquakes and 
volcanic eruptions (e.g. Sumatra earthquake in 2004, Krakatoa eruption in 2018).


• Adjoint waveform tomography is especially suitable for imaging such complex regions 
since it can account for the effects of anisotropy, anelasticity, wavefront healing, 
interference and (de)focusing that can hamper other seismological methods.


 



Adjoint waveform tomography 

(1) Synthetic seismograms are computed by 
simulating the 3D wavefield, thereby 
taking into account both body and 
surface waves.


(2) Synthetic and observed waveforms are 
compared using a suitable misfit 
measure.


(3) Sensitivity kernels (and thus the gradient) 
are computed using adjoint techniques.


(4) The current model is updated using a 
gradient-based optimisation scheme 
(e.g. L-BFGS).

Adjoint waveform tomography is an inverse 
problem where an initial model is updated 
based on the difference between synthetics 
and observed waveforms. (1)

(2)

(3)

(4)
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Plate tectonic boundaries interpreted by Bird (2003)

• There are few public stations available within the area, mainly targeting hazardous regions.


• However, our recently deployed networks of broadband seismometers on Borneo and Sulawesi 
promise a significant improvement in data coverage, thereby providing new opportunities to untangle 
the region’s complexity.


• The current event catalogue contains 188 events (M4.5 - 7.7) which occurred between January 
2014 and March 2020 and are distributed spatially as uniformly as possible.
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Comparison of seismograms

• Realistic synthetics were obtained using Salvus 
(Afanasiev et al., 2019), accounting for 
anisotropy, attenuation and topography.


• A multi-scale approach (Bunks, 1995) is 
adopted, which mit igates the r isk of 
entrapment in local minima and cycle skips.


• Delayed observed waveforms agree with an 
anomalous low-velocity zone in the upper 
few hundred kilometres revealed by several 
global tomographic studies (e.g. Ritsema, van 
Heijst, and Woodhouse, 1999; Amaru, 2007) 
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Choice of objective function

• The objective function defines the 
measurement(s) made on a seismogram.


• Finding a suitable objective function 
remains an active area of research (e.g. 
Yuan et al., 2020). Most objective 
functions favour large-amplitude signals, 
meaning surface waves. Thus, in particular 
depth information, derived mostly from 
small-amplitude body waves, ends up 
being lost.


• Sophisticated weighting and window 
selection algorithms have been introduced 
to balance amplitude differences (e.g. 
Krischer et al., 2015), but there is still a 
trade-off between including as much 
signal as possible while avoiding noisy 
data. 

A B

• Below, we show an example for frequency-dependent phase 
misfits based on the time-frequency transform of both data and 
synthetics (Fichtner et al., 2008).
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misfit function: time-frequency misfit (Fichtner et al., 2008)

window picking based on LASIF (Krischer et al., 2015)

• A smoothed multi-event gradient shows a dominantly positive gradient, which indicates that 
a velocity decrease is required (as expected from delayed observed waveforms). 


• Note that source imprints have not yet been removed.
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Next Steps

• Investigate the possibility of enhancing depth sensitivity 
by optimising the data selection procedure (as 
suggested by Blom, Gokhberg, and Fichtner, 2020). 
  

• Constrain a large-scale 3-D seismic structural model of 
the crust and upper mantle beneath Southeast Asia. 

Palawan, Philippines
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