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Continuous gravimetry observations encompassmany geophysical phenomena of varying amplitudes and periods. In the framework of NEWTON-g, continuous
gravimetry will be used tomonitor mass changes in the subsurface surrounding Mt. Etna, Sicily, Italy. The transient gravity signature of local precipitation and
snowmeltingmayobscure volcano-related gravity observations. Wepresent amethod to correct for the effect of shallowhydrological processes using rain gauge
data, GNSS-IR for snowmelt estimates, and a hydrological transfer function that converts precipitation and snowmelt to an expected relative gravity change.

Introduction
We study the transient effect of groundwater mass changes on
the observed gravity signal from a superconducting gravimeter de-
ployed on Mt. Etna, Italy. Gravimeters are capable of detecting mi-
nor changes in the vertical component of gravity over time scales
from minutes to years. Insight on geophysical phenomena that
cause mass displacements in the subsurface can thus be obtained
through the use of gravimetry that may otherwise remain con-
cealed. Gravity recordings contain multiple components which
contribute to the signal with different magnitudes, such as earth
tides, atmospheric pressure, and local hydrology. These compo-
nents need to be precisely evaluated, in order to isolate a possi-
ble volcanic signal. Here, we study the effect of groundwater mass
changes on gravity, as a result of rainfall and snow melting, the lat-
ter estimated through GNSS interferometric reflectometry. A for-
ward charge-discharge model is used to compare gravity record-
ings between 2018 - 2019 with observed and esimated precipita-
tion events. We show that the observed gravity signal cannot be
explained only through changes in groundwater mass, implying
that other, possibly volcanic processes must have been at play.

Figure 1: Geographical location showing site Serra La Nave (alt: 1735 m) where
the superconducting gravimeter is deployed on Mt. Etna, Sicily, Italy. Source:
Google Maps.

Precipitation Data
To model the subsurface response to precipitation events, good
control on solid (snow) and wet (rain) precipitation is required.
Rain measurements are available from a weather station that is
co-located with the superconducting gravimeter. Direct measure-
ments of snow height are absent and must be estimated.

SnowDepth Estimates

Local snow depth is estimated through a GNSS receiver, using the
technique of GNSS Interferometric Reflectometry (GNSS-IR) devel-
oped by Larson & Nievinski (2012). Constructive and deconstruc-
tive interference between direct and reflected multipath waves
from GNSS satellites impose changes in the relative signal ampli-
tudes that are correlated with the distance from the antenna to a
reflective ground surface, and thus inversely proportional to snow
depth. The signal-to-noise (SNR) ratioof the recorded signal is pro-
portional to:

SNR ∝ cos (4πℎ𝜆−1 sin𝜃) (1)

Where 𝜆 represents the wavelength of the GNSS L1 (∼ 19.03 cm)
or L2 (∼ 4.42 cm) carrier frequencies. The angle 𝜃 represents the
observed satellite elevation in rad, ℎ the distance to the reflective
surface in m. This equation represents that of a simple harmonic
motion of the form: 𝐴 cos𝜔𝑡, where the reflector height term ℎ

is included in the angular frequency 𝜔. This dominant frequency
can be recovered through a spectral analysis (Lomb-Scargle peri-
odogram; Fig. 3) of the SNR as a function of the sine of the ob-
served satellite elevation angle 𝜃 as shown in Fig. 2, and thus con-
verted to reflector height following Eq. 1.

Figure 2: The relationship between the SNR (Volts) and the sine of the apparent
elevation angle of the satellite (blue). Top) a second order polynomial detrend
is applied (orange) to eliminate long period leakage, and bottom) the dominant
angular frequency is recovered (red) through the periodogram in Fig. 3.

Figure 3: Lomb-Scargle periodogram of the data in Fig. 2. The dominant fre-
quency𝜔 is converted to a reflector height following Eq. 1.

Figs. 2 and 3 show the process for a single satellite overhead pass,
while a total of 32 GPS satellites are available. We obtain the best
results for reflections from a certain azimuthal range, depending
on the quality of the reflection track, which varies due to terrain,
vegetation, or canopies breaking the satellite line-of-sigth. Fig. 4
shows estimated reflector height for three satellites as function of
date, colored by satellite azimuth. Lower azimuths (between 20
and70degrees) give stable reflectorheights,while reflections from
higher azimuths are increasingly scattered.
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Figure 4: Estimated reflector heights for three satellites with PRN identifiers 17,
22, and 28 as a function of time and reflection azimuth.

The calculation is repeated for all reflections within the acceptable
azimuth range 20 < 𝜙 < 70 and plotted in Figure 5. A running me-
dian is used to smooth the result, and reflector heights are then in-
verted to local snow depth. The negative gradient of snow depth is
assumed to the amount of meltwater contributing to the ground-
water balance.

Figure 5: Estimated snow depths using GNSS-IR between 2015 - 2019 at site
Serra La Nave, Sicily. Clear peaks can be identified in winter with a maximum
snow cover of 1.2 m.

Relating Precipitation to Gravity
We apply the forward groundwater model derived by Crossley
(1998) that uses an exponential fast charge (𝜏1 = 21d) and slow
discharge (𝜏2 = 258d)model (Eq. 2), illustrated by the green curve
in Fig. 6. A scaling factor of 𝐾ℎ𝑔 = 38 µGal/m and snow density
factor 𝐾𝑠𝑤 = 0.34 are used to relate the mass of rain and snow
melt to gravity change. The model parameters were previously fit-
ted to gravity data between 2015 - 2017 at the same site. The model
suggests that rainwatermovesbeneath thegravimeter at a fast rate,
and slowly infiltrates deeper into the soil until the gravimeter is no
longer sensitive enough.

𝑔(𝑡) =
t

∑
𝑥=t0

𝐾hg (𝐾sw𝛿x(snow) + 𝛿x(rain)) (1 − e−
𝑡−𝑥
𝜏1 ) (e−

𝑡−𝑥
𝜏2 ) (2)

Figure 6: Example model by convolving the exponential charge-discharge func-
tion (green) and daily precipitation impulses (blue) to calculate the expected grav-
ity signal through time (red). No snow melting is assumed.

The final results including measured precipitation data and snow
melt estimates are shown in Figure 7, and compared to the ob-
served superconducting gravimeter data. There is a good align-
mentwith thegravity data, except for the suddendropand recovery
in gravity around the start of 2019 that cannot be explained by local
precipitation or meltwater.
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Figure 7: The final results including measured precipitation (blue) snow depth es-
timates (red), are shown in Fig. 7. The modelled gravity signal (green) compared
to the observed signal by the superconducting gravimeter (orange).

Conclusion
We show that through the combined efforts of GNSS-IR and a sim-
ple forward hydrological model we can estimate the gravity re-
sponse of precipitation and deduct it from the observations. We
succefully identify a gravity signal unrelated to local hydrology that
mustbe inducedbyanother (volcanic) processes and shouldbe fur-
ther investigated.
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