

IWV retrieval from ground and shipborne GPS receivers during NAWDEX

Pierre Bosser¹, Olivier Bock² and Nicolas Laurain³

- ¹ ENSTA Bretagne Lab-STICC, Brest, France
- ³ IGN IPGP, Paris, France
- ² IGN ENSG, Marne-La-Vallée, France

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目目 の々で

Context: NAWDEX campaign

North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) campaign [Sch+18]:

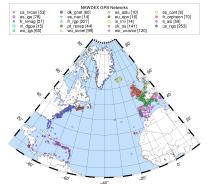
- Objective:
 - Better understanding of diabatic process on the evolution of atmospherics disturbances along the North Atlantic jet stream
 - Better representation of these processes in Numerical Weather Prediction models
- Observational field experiment for 1 month (mid-Sept. to mid-Oct. 2016)
- Deployment of four research aircraft and ground-based instrumentation.
 Use of GNSS CORS to complete this instrumentation.

Network and Analysis	Comparisons with ECMWF Reanalaysis	IWV from shipborne GPS	Conclusion
Outlines			EVENTER Fretayner EVENTER 2020

- 1 Network and Analysis
- 2 Comparisons with ECMWF Reanalaysis
- 3 IWV from shipborne GPS
- 4 Conclusion

ELE DQC

Network and Analysis	
•0	


1 Network and Analysis

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Bretagne

Network and processing

- Around 1,200 COR stations along the North Atlantic
- DOY 240 to 310 (August 27 to November 5)
- 19 data providers (free or private).
- GPS processing in PPP_AR mode using Gipsy-Oasis II 6.4

Troposphere modeling:

- Use of VMF1 / VMFgrid for troposphere modeling [Boe+06]
- Random walk process for ZWD (5 mm·h^{-1/2}) and horizontal gradients (0.5 mm·h^{-1/2}); 5 min resolution
- Screening of estimates with rejection rate around 0.3% [Boc+16]

P. Bosser, O. Bock & N. Laurain

GPS NAWDEX

Network and Analysis	Comparisons with ECMWF Reanalaysis	IWV from shipborne GPS	Conclusion OO
Outlines			ECTATION ENTRY 2020

1 Network and Analysis

2 Comparisons with ECMWF Reanalaysis

3 IWV from shipborne GPS

4 Conclusion

三日 のへの

イロト イヨト イヨト イヨト

ERAI (6h x 0.75°) and ERA5 (1h x 0.25°): P_{surf} and *IWV* interpolated & extrapolated from grid at GPS antenna height:

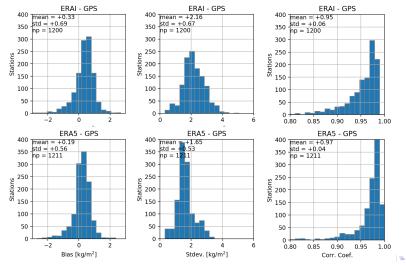
Horizontal: bilinear interpolation

Vertical: extrapolation [Par+18]

GPS IWV (5min):

- Use of ERAI/ERA5 surface pressure field extrapolated at GPS antenna height for ZHD computation.
- Conversion from *ZWD* to *IWV* using T_m from TU Wien.

[Reminder: 1kg/m^2 IWV = 1mm PWV \approx 6.5mm ZWD]

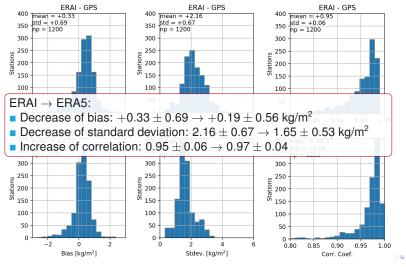

Comparisons are limited to stations with at least 50 measurements co-incident with ERAI / ERA5 data.

Global differences (ERAI/ERA5 – GPS)

ERAI (↑) / ERA5 (↓)

Bias (\leftarrow) / Standard-deviation (-) / Correlation (\rightarrow)

P. Bosser, O. Bock & N. Laurain

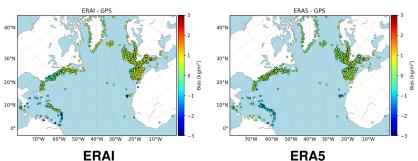

GPS NAWDEX

Global differences (ERAI/ERA5 - GPS)

ERAI (\uparrow) / ERA5 (\downarrow)

Bias (\leftarrow) / Standard-deviation (-) / Correlation (\rightarrow)

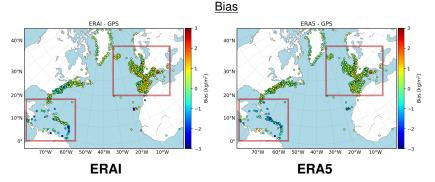
P. Bosser, O. Bock & N. Laurain


GPS NAWDEX

Februray 25, 2020 8 / 18

Conclusion

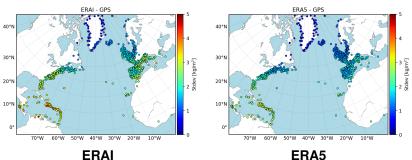
Spatial distribution of differences ERAI/ERA5 – GPS


<u>Bias</u>

イロン イヨン イヨン イヨン

Conclusion

Spatial distribution of differences ERAI/ERA5 – GPS


- Spatial consistency of differences; higher values in Caribbean region, bias is reduced as latitude increases
- Spatial variability of bias increases when latitude decreases
- Decrease over Europe and Caribbean (slight) with ERA5.

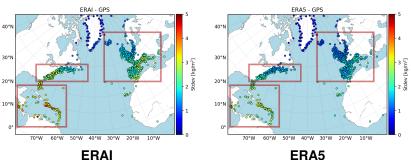
P. Bosser, O. Bock & N. Laurain

GPS NAWDEX

Spatial distribution of differences ERAI/ERA5 – GPS

Standard deviation

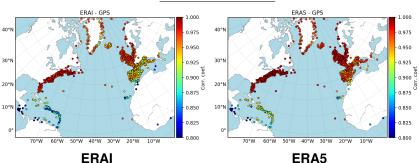
P. Bosser, O. Bock & N. Laurain


GPS NAWDEX

Februray 25, 2020 9 / 18

Conclusion

Spatial distribution of differences ERAI/ERA5 – GPS


Standard deviation

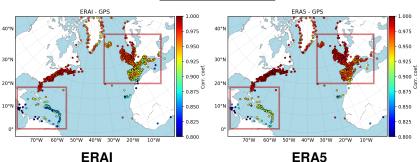
- Spatial consistency of differences; higher values in Caribbean, lower values as latitude increases
- Decrease over Europe, US East Coast and Caribbean with ERA5.

P. Bosser, O. Bock & N. Laurain

Spatial distribution of differences ERAI/ERA5 – GPS

Correlation coefficient

P. Bosser, O. Bock & N. Laurain


GPS NAWDEX

Februray 25, 2020 9 / 18

Conclusion

Spatial distribution of differences ERAI/ERA5 – GPS

Correlation coefficient

- Lower correlation over Caribbean ; slight improvements with ERA5.
- Significant increase over Europe and Greenland with ERA5.

(日)(4月)(4日)(4日)(日)

Conclusion

Case study example: CO Sanchez

Cutoff Sanchez over Mediterranean Area (IOP9)

From [Sch+18]:

- Surface cyclone Sanchez formed in the middle of the Atlantic Ocean (35°W, 40°N) around 2016/10/08 18:00 UTC.
- Associated high-impact weather event over Southern France on 13-14 Oct 2016 (heavy precipitations and strong winds over France and Italy).

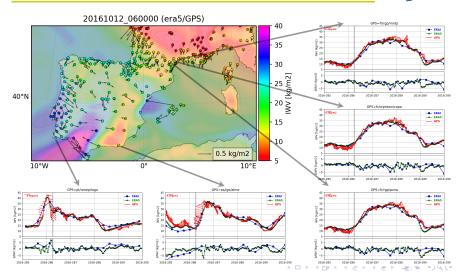
Use of:

- GPS IWV and IWV gradients (5 min)
- ERAI IWV & Total precipitation fields (6h / 0,75° × 0,75°)
- ERA5 IWV & Total precipitation fields (1h / 0,25° \times 0,75°)
- Total precipitation from NCDC /NOAA

CO Sanchez: IWV space and time evolution GPS IWV + gradient, ERAI, ERA5 (+colormap)

GN ENSTA Bretagne

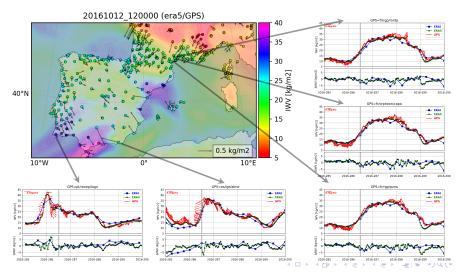
20161012_000000 (era5/GPS) 40 35 30 25 25 20 NMI 40°N GPS=fr/orpheon/capa ---15 0.5 kg/m2 5 10°W 0° GPS=pt/reneg GP5=es/lge/alme GPS=fr/rap/pzna a Show - FRA - FRAS 2 10 102 ž 21


P. Bosser, O. Bock & N. Laurain

GPS NAWDEX

CO Sanchez: IWV space and time evolution GPS IWV + gradient, ERAI, ERA5 (+colormap)

EGU Seneral, 2020

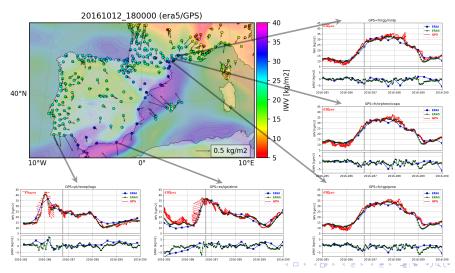

P. Bosser, O. Bock & N. Laurain

GPS NAWDEX

CO Sanchez: IWV space and time evolution GPS IWV + gradient, ERAI, ERA5 (+colormap)

GN ENSTA Bretagne

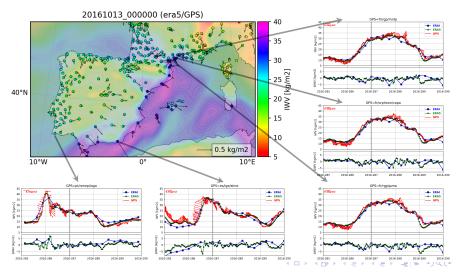
EGU Seneral, 2020


P. Bosser, O. Bock & N. Laurain

GPS NAWDEX

CO Sanchez: IWV space and time evolution GPS IWV + gradient, ERAI, ERA5 (+colormap)

EGU Seneral, 2020


P. Bosser, O. Bock & N. Laurain

GPS NAWDEX

CO Sanchez: IWV space and time evolution GPS IWV + gradient, ERAI, ERA5 (+colormap)

EGU Seneral, 2020

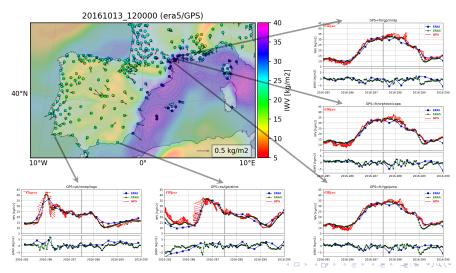
P. Bosser, O. Bock & N. Laurain

GPS NAWDEX

CO Sanchez: IWV space and time evolution GPS IWV + gradient, ERAI, ERA5 (+colormap)

GN ENSTA Bretagne

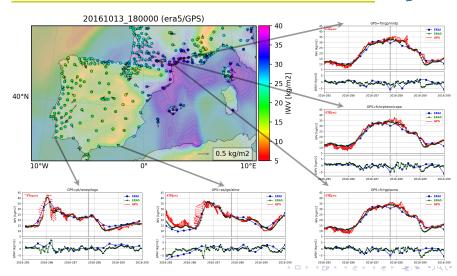
20161013_060000 (era5/GPS) 40 35 30 25 25 20 NMI 40°N GPS=fr/orpheon/capa 15 0.5 kg/m2 5 10°W 0° GPS=pt/reneg GP5=es/lge/alme GPS=fr/rap/pzna a Show - FRA · FRAS 2 10 102 ž 21


P. Bosser, O. Bock & N. Laurain

GPS NAWDEX

CO Sanchez: IWV space and time evolution GPS IWV + gradient, ERAI, ERA5 (+colormap)

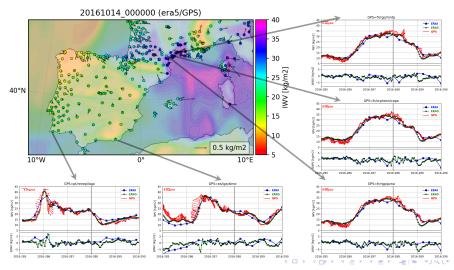
GN ENSTA Bretagne


P. Bosser, O. Bock & N. Laurain

GPS NAWDEX

CO Sanchez: IWV space and time evolution GPS IWV + gradient, ERAI, ERA5 (+colormap)

GN ENSTA Bretagne


P. Bosser, O. Bock & N. Laurain

GPS NAWDEX

CO Sanchez: IWV space and time evolution GPS IWV + gradient, ERAI, ERA5 (+colormap)

EGU Seneral, 2020

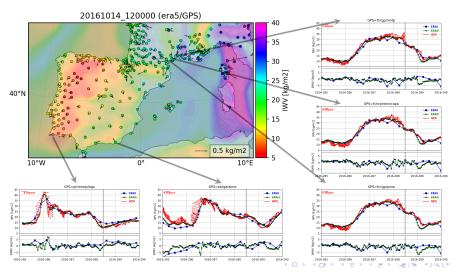
P. Bosser, O. Bock & N. Laurain

GPS NAWDEX

CO Sanchez: IWV space and time evolution GPS IWV + gradient, ERAI, ERA5 (+colormap)

GN ENSTA Bretagne

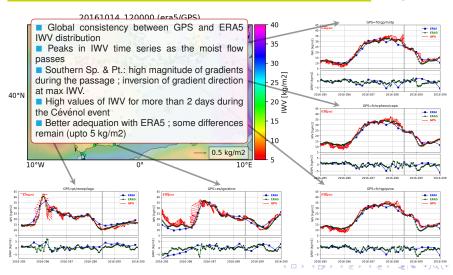
20161014_060000 (era5/GPS) 40 35 30 40°N GPS=fr/orpheon/capa 15 0.5 kg/m2 5 10°W 0° GPS=pt/rene GP5=es/lge/alme GPS=fr/rap/pzna a Show - FRA - FRAS 2 10 102 ž 21


P. Bosser, O. Bock & N. Laurain

GPS NAWDEX

CO Sanchez: IWV space and time evolution GPS IWV + gradient, ERAI, ERA5 (+colormap)

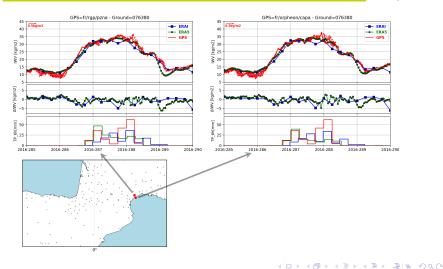
EGU Seneral 2020


P. Bosser, O. Bock & N. Laurain

GPS NAWDEX

CO Sanchez: IWV space and time evolution GPS IWV + gradient, ERAI, ERA5 (+colormap)

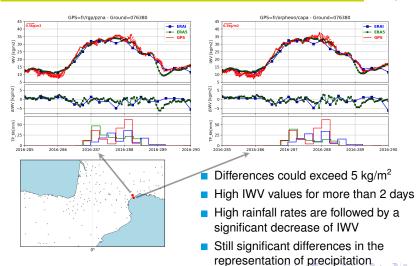
EGU Seneral 2020


P. Bosser, O. Bock & N. Laurain

GPS NAWDEX

CO Sanchez: Rainfall

GPS IWV, Total Precipitation obs. (6h), ERAI, ERA5


P. Bosser, O. Bock & N. Laurain

GPS NAWDEX

CO Sanchez: Rainfall

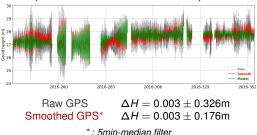
GPS IWV, Total Precipitation obs. (6h), ERAI, ERA5

Network and Analysis	Comparisons with ECMWF Reanalaysis	IWV from shipborne GPS	Conclusion
Outlines			ECCENTRAL ECCENTRAL ECCENTRAL ECCENTRAL ECCENTRAL ECCENTRAL

Network and Analysis

- 2 Comparisons with ECMWF Reanalaysis
- 3 IWV from shipborne GPS

4 Conclusion

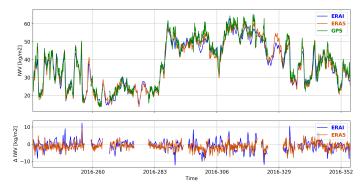

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ► ● □ ■ ● ● ● ●

Overview

P. Bosser, O. Bock & N. Laurain

- GNSS data acquired during a 120 days cruise in the North Atlantic.
- Kinematic analysis in PPP_AR (Gipsy-Oasis II 6.4)
- IWV extraction using ERA5 atmospheric pressure fields at MSL.
- Comparison of GPS geoid height (EGM2008) with model (FES2014 + MSS_CNES_CLS2015).

GPS NAWDEX



(日) (周) (王) (王) (王)

Conclusion

IWV comparisons wrt ECMWF reanalysis GPS IWV, ERAI, ERA5

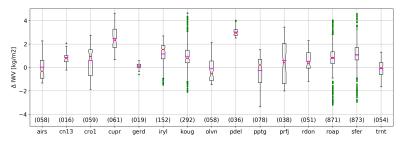
Differences [kg/m²]:

ERAI (392)	-0.98±3.19	-12.22 ≓ 12.33	+0.969
ERA5 (2349)	$-1.31{\pm}2.00$	-9.54 ≓ 9.37	+0.988

- Improvements considering ERA5 instead of ERAI
- Consistency with differences observed previously for CORS

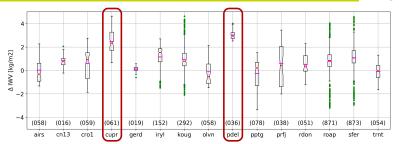
GPS NAWDEX

IWV comparisons wrt CORS GPS IWV, CORS



Use of CORS with distance inferior to 50 km Overall differences [kg/m²]: CORS (2716) -0.88 ± 1.22 $-3.35 \rightleftharpoons 4.64$

IWV comparisons wrt CORS GPS IWV, CORS


Use of CORS with distance inferior to 50 km Overall differences [kg/m²]: CORS (2716) -0.88 ± 1.22 $-3.35 \rightleftharpoons 4.64$ Deviations vary from station to station

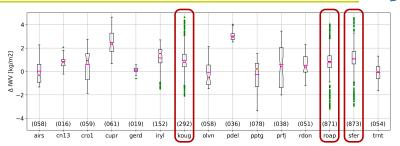
GPS NAWDEX

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

IWV comparisons wrt CORS GPS IWV, CORS

Use of CORS with distance inferior to 50 km

Overall differences [kg/m²]:


CORS (2716) -0.88±1.22 -3.35 ≈ 4.64

Deviations vary from station to station

Significant bias for PDEL (Azores) and CUBR (Porto-Rico)

IWV comparisons wrt CORS GPS IWV, CORS

Use of CORS with distance inferior to 50 km

Overall differences [kg/m²]:

CORS (2716) -0.88±1.22 -3.35 ≓ 4.64

Deviations vary from station to station

Significant bias for PDEL (Azores) and CUBR (Porto-Rico)

 Outlying differences mainly occur as the distance between Ship and CORS is superior to 40 km.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Network and Analysis	Comparisons with ECMWF Reanalaysis	IWV from shipborne GPS	Conclusion • O
Outlines			EUreeu, 2020

Network and Analysis

- 2 Comparisons with ECMWF Reanalaysis
- 3 IWV from shipborne GPS

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Conclusion & perspectives

GPS-derived IWV dataset produced for NAWDEX from more than 1,200 CORS along North Atlantic:

- Comparison with ERAI and ERA5 reanalysis highlight improvements induced by ERA5.
 Some significant differences remain, part. in the Caribbean.
- HIW case study: large scale agreement with the analyses, part. ERA5. GPS IWV is more suitable to reproduce variations at small spatial and temporal scale.
 - ► Further investigations using **high resolution NWP** to investigate bad precipitation forecast.
 - Documentation of other cases (Walpurga Cyclon, etc.).

The CORS dataset is completed with IWV from shipborne GPS antenna:

- Consistency with ECMWF reanalysis ; agreement increases with ERA5.
- Good agreement with CORS IWV.

Further analysis of Atalante data acquired during other campaigns across the oceans.

P. Bosser, O. Bock & N. Laurain

Acknowledgments

Work supported by the French ANR / DIP-NAWDEX (ANR-17-CE01-0010).

GPS data providers:

- DTU Space (DK) [Kha+16].
- British Isles continuous GNSS Facility (UK / IR).
- NRCAN (Ca), IGE, RGAPA, (Es), RENAG, Orpheon, RGP (Fr), LMI (Is), Asi (It), DGPA (NI), NGS (Us), RENEP (Pt), UNAVCO, SONEL, IGS, EPN.

Atalante dataset:

- Cannat M. & Sarradin P.-M. (2016) MOMARSAT2016 cruise, RV L'Atalante, doi:10.17600/16001200
- (2016) TR_LHACAD cruise, RV L'Atalante,
- Garcia M. (2016) GRACO cruise, RV L'Atalante, doi:10.17600/16001300
- (2016) TR_CADCAY cruise, RV L'Atalante,
- Graindorge D., Klingelhoeffer F. (2016) MARGATS cruise, RV L'Atalante, doi.org/10.17600/16001400
- (2016) TR_CAYPAP cruise, RV L'Atalante,
- (2016) TR_PAPNAS cruise, RV L'Atalante,
- Mulder Th. (2016) CARAMBAR 2 cruise, RV L'Atalante, doi:10.17600/16001500
- Testor P., Coppola Laurent (2018) MOOSE-GE 2018 cruise, RV L'Atalante, doi:10.17600/18000442
- (2018) TR_SEYPDA cruise, RV L'Atalante,
- Perrot J. (2018) HYDROMOMAR18 cruise, RV L'Atalante, doi.org:10.17600/18000512
- Le Bris N. (2018) TRANSECT cruise, RV L'Atalante, doi:10.17600/18000513

References

1

O. Bock et al. "A high-quality reprocessed ground-based GPS dataset for atmospheric process studies, radiosonde and model evaluation, and reanalysis of HyMeX Special Observing Period". In: Quarterly Journal of the Royal Meteorological Society 142 (2016), pp. 56–71. DOI: 10.1002/qj.2701.

J. Boehm et al. "Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data". In: **Journal of Geophysical Research** 11 (2006), pp. 2406–+. DOI: 10.1029/2005JB003629.

S. A. Khan et al. "Geodetic measurements reveal similarities between post–Last Glacial Maximum and present-day mass loss from the Greenland ice sheet". In: Science Advances 2.9 (2016). DOI: 10.1126/sciadv.1600931.

A. C. Parracho et al. "Global IWV trends and variability in atmospheric reanalyses and GPS observations". In: **Atmospheric Chemistry and Physics** 18.22 (2018), pp. 16213–16237. DOI: 10.5194/acp-18-16213-2018.

A. Schäfler et al. "The North Atlantic Waveguide and Downstream Impact Experiment". In: **Bulletin of the American Meteorological Society** 99.8 (2018), pp. 1607–1637. DOI: 10.1175/BAMS-D-17-0003.1. eprint: https://doi.org/10.1175/BAMS-D-17-0003.1.