Contribution of GIA and deep mantle to gravity field anomaly in North America

Jesse Reusen¹, Bart Root¹, Javier Fullea², Zdenek Martinec³, Wouter van der Wal¹

¹Delft University of Technology, The Netherlands ²Universidad Complutense de Madrid, Spain ³Dublin Institute for Advanced Studies, Ireland

Introduction

Observations

BY

Observations show a negative anomaly of up to 60 mGal in the gravity field over Hudson Bay

Because this area has been covered by the Laurentide ice sheet 26 thousand years ago, people are inclined to believe that this anomaly is related to glacial isostatic adjustment (GIA)

The model

a)

NWC

Components

mGal

-40

CC

We will aggregate contributions from the Crust, the mantle and GIA. Theoretically, the sum of these components should match the observed gravity field.

For the mantle and GIA models, two options are shown: small \mathbf{v}_{Im} (<10²² Pa s) and large v_{lm} (>10²² Pa s).

 \mathbf{v}_{Im} = lower mantle viscosity (in 10²⁰ Pa s)

Results

Total gravity field

Results

Relative contributions

Summary

- Gravity field comprises:
 - GIA
 - Crust / lithosphere
 - Mantle
- Mantle signal: <10 mGal, GIA: ~40 mGal, Crust: <15 mGal
- Preference for: lower mantle viscosity > 10^{22} Pa s.

