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The CRPS – used as a robust objective function for 
groundwater model calibration in light of observation 

and model structural uncertainty



Let’s talk about objective functions…

Hydrologic models commonly require parameter 
estimation through optimization, which involves fitting 
simulated results to some observations

The objective functions used here are usually squared-
error-based.

Squared-error-based performance criteria, however, are 
(overly?) sensitive to extreme values/outliers
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Berthet et al., 2010
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…and about deficiencies in our observations and 
models

This sensitivity of squared-error-based performance criteria to extreme 
values is problematic, especially in practical applications of large-scale 
models:

1. Model deficiencies
Inevitable model structural errors, e.g. in the hydrogeologic model

2. Data deficiencies
Can outliers in observations be identified reliably? Can we assess 
observational uncertainty?
No, often when dealing with large datasets of e.g. groundwater heads, 
data origin and quality is unknow

→need for a robust objective function
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Working with large-scale models: the DK-model, covering all of 
Denmark with the available head observations, from the public 
national well database (Højberg et al., 2013; Stisen et al., 2019) 
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Using the CRPS as robust objective function

Originally, the Continuous Ranked Probability Score 
CRPS is an evaluation tool for probabilistic forecasts 
(Gneiting et al., 2005)

We suggest using it as an objective function, instead 
of the commonly used squared-error-based metrics, 
because of its

• insensitivity to outliers/extreme values

• sensitivity to bias

Both are desirable properties e.g. in our 
applications, large-scale groundwater models
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reference: Ɲ(0,1)

adding outliers: Ɲ(0,1) 
with 10% from |Ɲ(0,5)|
→ CRPS: 1.2*ref

MSE: 3.5*ref
MAE: 1.4*ref
MRE: 1.2*ref

introducing bias: Ɲ(0.5,1)
→ CRPS: 1.4*ref

MSE: 1.3*ref
MAE: 1.1*ref
MRE: 1.1*ref
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The CRPS applied…

04-05-2020© Authors 2020. All rights reserved.

…to the calibration of two Danish regional-scale distributed 
groundwater-surface water models, set up in MIKE SHE (details in 
Schneider et al., 2020, HESS Discussions*)

A: Storå catchment, B: Odense catchment

• based on the national water resource model for Denmark 
(DK-model, http://dk.vandmodel.dk/in-english/)

• area each ~1,000 km2, 500 m model resolution

• unit-based parameterization of geology 

• transient model, daily timesteps from 2000 to 2008

• calibrated against

• observed groundwater heads
A: 5,218 obs. in 890 wells; B: 44,723 obs. in 1820 wells

• observed daily stream discharge
A: 6 stations; B: 9 stations

* https://www.hydrol-earth-syst-sci-discuss.net/hess-2019-685/
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The CRPS applied…
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…to the calibration of two Danish regional-scale distributed 
groundwater-surface water models, set up in MIKE SHE (details in 
Schneider et al., 2020, HESS Discussions*)

Residual per grid cell for Odense. Left: All ME per grid from the CRPS calibration. Middle: only showing ME per grid, where 
the CRPS performs better than the MSE calibration. Right: only showing ME per grid, where the CRPS calibration performs 
worse than the MSE calibration. Again, it can be seen that the majority of the grid cells performs better after the CRPS 
calibration. Among the worse performing grids, some patterns become obvious → issues with model structure, 
boundary conditions or similar?

* https://www.hydrol-earth-syst-sci-discuss.net/hess-2019-685/

With using the CRPS instead 
of the MSE, we achieve a 
better model fit for the 
majority of observations,
while keeping some larger 
misfits more obvious that can 
hint to data or model issues, 
potentially allowing a revisit

→the benefits of the robust 
CRPS shown for a synthetic 
example: see slide 10
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y-axis: Absolute residuals per model grid cell after calibration against CRPS. x-axis: Difference 
in absolute residuals per model grid cell between calibration against CRPS and calibration 
against MSE. The majority of the grid cells lie in the white half of the plot, i.e. they have a 
improved fit after the CRPS calibration over the MSE calibration. Those grid cells that have 
worse fit after CRPS calibration (grey half), have predominantly larger residuals.
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Conclusions
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In general, the focus on squared-error-based objective functions can be problematic, especially in practical 
applications of large-scale models with inevitable, hard to quantify deficiencies in model and observation 
data – even though we generally are aware of the significance of the calibration targets and data in our 
modelling work.

We want to

1) highlight the issues with squared-error based metrics in these contexts

2) suggest CRPS as an alternative, given its relative insensitivity to outliers, as it

→reduces need for outlier filtering, which potentially is a subjective task

→reduces risk of parameter compensation for data and model deficiencies

→allows better identification of model structural issues or systematic errors in observations after 
calibration

→synthetic experiments could show that CRPS calibration results (i) in parameter values closer to truth, 
and (ii) less disturbed model results
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Motivation
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As mentioned above, in many cases (especially larger scale practical applications of 
hydrological models), we are dealing with inevitable deficiencies in data and models that 
are hard to quantify.

This is where we want to suggest the use of a robust objective function, which does not 
show the sensitivity to large values of squared-error-based metrics.

Our hypothesis is that a robust objective function is a practical way to

• reduce parameter compensations for model structural deficiencies

• allow better post-calibration identification of model areas with model structure or data 
deficiencies

• allow better ingestion of (large) datasets with unknown and varying quality

• reduce the need for sometimes subjective (false?) outlier filtering
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The CRPS applied in a synthetic example
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Synthetic example, based on the Storå model, with 
same spatio-temporal distribution as real observations

• synthetic observations taken from reference run

• some synthetic observations perturbed

• model calibrated against perturbed data, using 
different objective functions

→CRPS clearly less affected by the perturbed 
observations than conventional MSE

→CRPS performs similar to MAE and MRE; however, we 
prefer CRPS due to its higher sensitivity to bias

(similar behavior when looking at how close calibrated 
parameters are to true parameters)

The deviation of the average simulated groundwater heads [m] 
of the models calibrated against the perturbed observations 

compared to the reference model as the mean across all model 
layers. The ME and MAE given in each title give the average 

deviations across all model grid cells.
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Abstract
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The Continuous Ranked Probability Score (CRPS) is a popular evaluation tool for probabilistic forecasts. We suggest using it, outside its original 
scope, as an objective function in the calibration of large-scale groundwater models, due to its robustness to large residuals in the calibration 
data.

Groundwater models commonly require their parameters to be estimated in an optimization where some objective function measuring the 
model’s performance is to be minimized. Many performance metrics are squared error-based, which are known to be sensitive to large values 
or outliers. Consequently, an optimization algorithm using squared error-based metrics will focus on reducing the very largest residuals of the 
model. In many cases, for example when working with large-scale groundwater models in combination with calibration data from large 
datasets of groundwater heads with varying and unknown quality, there are two issues with that focus on the largest residuals: Such outliers 
are often i) related to observational uncertainty or ii) model structural uncertainty and model scale. Hence, fitting groundwater models to such 
deficiencies can be undesired, and calibration often results in parameter compensation for such deficiencies.

Therefore, we suggest the use of a CRPS-based objective function that is less sensitive to (the few) large residuals, and instead is more 
sensitive to fitting the majority of observations with least bias. We apply the novel CRPS-based objective function to the calibration of large-
scale coupled surface-groundwater models and compare to conventional squared error-based objective functions. These calibration tests show 
that the CRPS-based objective function successfully limits the influence of the largest residuals and reduces overall bias. Moreover, it allows for 
better identification of areas where the model fails to simulate groundwater heads appropriately (e.g. due to model structural errors), that is, 
where model structure should be investigated.

Many real-world large-scale hydrological models face similar optimizations problems related to uncertain model structures and large, uncertain 
calibration datasets where observation uncertainty is hard to quantify. The CRPS-based objective function is an attempt to practically address 
the shortcomings of squared error minimization in model optimization, and is expected to also be of relevance outside our context of 
groundwater models.
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