





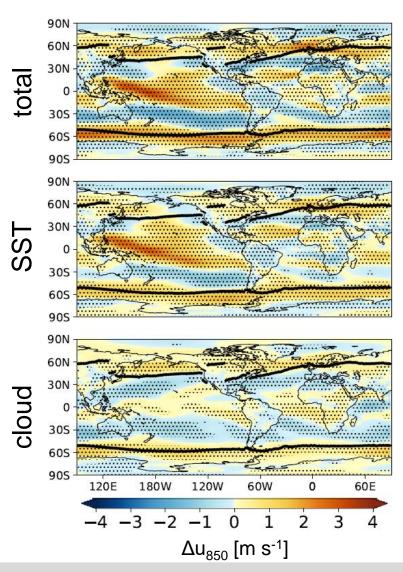








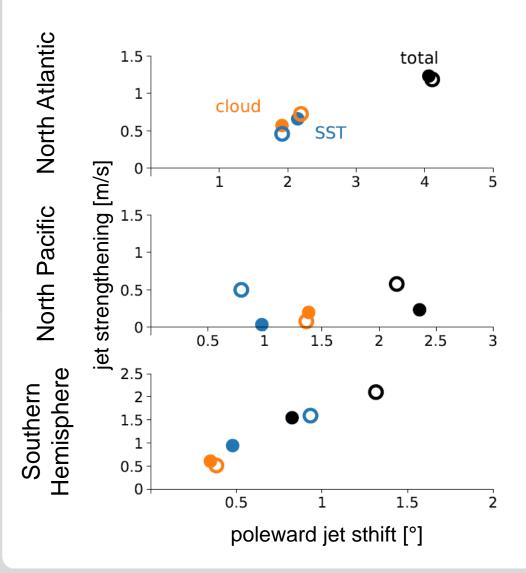
## Which regional cloud-radiative changes are most important for the global warming response of the midlatitude jet streams?


Nicole Albern<sup>1</sup>, Aiko Voigt<sup>1,2</sup>, David W. J. Thompson<sup>3</sup>, Joaquim G. Pinto<sup>1</sup>

<sup>1</sup>Institute of Meteorology and Climate Research – Department Troposphere Research, Karlsruhe Institute of Technology, Karlsruhe, Germany <sup>2</sup>Lamont Doherty Earth Observatory, Columbia University, New York, NY, USA <sup>3</sup>Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA



## Annual-mean 850 hPa zonal wind response to uniform 4K SST increase in ICON






- About half of the zonal wind response can be attributed to cloud changes
- Cloud impact is zonally symmetric, consistent with a zonally symmetric change in cloud-radiative heating in the midlatitudes
- Cloud impact is dominated by tropical cloud changes (not shown)

## Half of annual-mean jet response in NH attributed to clouds





- Cloud impact on jet response is substantial, and largely independent of season (not shown) and pattern of SST increase, but depends on the ocean basin
- Jet strengthening is dominated by tropical cloud changes (not shown)
- Tropical, midlatitude and polar cloud changes contribute to jet shift (not shown)
  - uniform SST increase
  - pattern SST increase