

Porosity of metamorphic rocks and fluid migration within subduction interfaces

BRUNO REYNARD, ANNE-CÉLINE C. GANZHORN, HELENE PILORGÉ

Fluid-rock interactions in subduction zones

Fluids released by the dehydrating plate: -generation of earthquakes T<700°C in the forearc region -melting and arc volcanism T>700°C

After Kirby et al. (1996); Shelly et al. (2006); Wada et al. (2008); Reynard (2013).

Porosity and permeability of metamorphic deformed rocks?

Fluids involved in earthquake cycle

Fluids are likely involved in slow seismicity (LFE, ETS, SSE, SE, ...) Precursors of large megathrust earthquake?

Propagation of Slow Slip Leading Up to the 2011 $M_{\rm W}$ 9.0 Tohoku-Oki Earthquake

(†)

BY

CC

Aitaro Kato,* Kazushige Obara, Toshihiro Igarashi, Hiroshi Tsuruoka, Shigeki Nakagawa, Naoshi Hirata

Fluid pressure and porosity cycle during earthquake cycle

Sleep & Blanpied (1994)

 (\mathbf{i})

ΒY

CC

Complex petrologic and metamorphic context

Exhumed subduction zones Monviso ophiolite W Alps Rock samples

CC I

Rock porosity in subduction zones

low pressure (<50 MPa) measurements for serpentinites and gabbro (Katayama et al., 2012 ; Kawano et al., 2011)

textural equilibrium experiments 1 GPa (e.g. Wark & Watson, 1998; Mibe et al. 1999; Miller et al., 2014)

No fluid reactivity

Domain of interest : 100 < T < 700°C, 0.1 < P < 3 GPa Highly anisotropic minerals (clays) no experimental data

HP experiment with isotopic tracer (D) diffusion

Belt press: 1.5-3 GPa, 315-550°C, 12-48h

Track elusive fluid-rock interactions with and take advantage of lattice diffusion (D/H inter-diffusion)

Earth and Planetary Science Letters 522 (2019) 107-117 Contents lists available at ScienceDirect

Earth and Planetary Science Letters

www.elsevier.com/locate/eps

Porosity of metamorphic rocks and fluid migration within subduction interfaces

A.C. Ganzhorn, H. Pilorgé, B. Reynard*

University of Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5276 LGL-TPE*, 46 Allée d'Italie, F-69007 Lyon, France

5 mm

(†)

CC

HP experiment with isotopic tracer (D) diffusion

(†)

CC

3 target natural rocks:

blueschist: metamorphic oceanic crust serpentinite: hydrated mantle wedge chlorite schist: metasomatic plate interface

Isotopic exchange map

Raman mapping (Pilorgé et al., 2017) Serpentinite, 315°C, 3 GPa, 12h

D-bearing zones = locations of fluid-rock interfaces (cracks or grain boundaries)

D concentration proportional to their number/unit length

From "exchange" map to porosity.

Principle: the D/(D+H) ratio of one pixel is proportional to the number of cracks or grain boundaries per unit length when $x \approx \sqrt{(D^*t)} \approx 20$ nm (< 500 nm = beam size)

solution of the diffusion equation for a plane sheet over small time (Crank, 1975)

$$\frac{C(x) - C_0}{C_1 - C_0} = \sum_{m=0}^{\infty} (-1)^m erfc(\frac{(2m+1)l - x}{2\sqrt{Dt}}) + \sum_{m=0}^{\infty} (-1)^m erfc(\frac{(2m+1)l + x}{2\sqrt{Dt}})$$
$$\frac{D}{D + H} = \frac{2n}{Y} \int_{\gamma=0}^{l} C(x) \, dx$$

n number of grain boundaries

From "exchange" map to porosity.

Principle: the D/(D+H) ratio of one pixel is proportional to the amount of cracks or grain boundaries.

Blueschist

Porosity

 (\mathbf{i})

BY

CC

Porosity Φ (and permeability k)

- Rock behavior from impermeable (chlorite schist) to slightly permeable (serpentinite) with porosity variations in response to deformation, and permeable (blueschist)
- Chlorite schist impermeable because highly deformable (low plastic yield stress)
- Consistent with geophysical estimates

 $k=k_0^*(\Phi/\Phi_0)^n$ (Kawano et al., 2011)

 (\mathbf{i})

CC

Oceanic crust porosity

Hot subduction Cascadia N America $\Phi = 2.5-4\%$ log k_{seal} = -21 to -23 Audet et al. Nature 2009; Peacock et al., Geology 2011

Cold subduction Tohoku NE Japan Φ = 1-2% Shiina et al. JGR 2013

Porosity Φ (and permeability k)

Ŧ

- Comparison with estimates for crustal rocks (Ingebritsen and Manning 1999, 2010)
- Permeability at subduction interface is much lower than continental crustal rocks
- Permeability of oceanic crust is similar to slightly lower than continental crustal rocks

Ganzhorn et al. EPSL 2019

Conclusions

Ganzhorn et al. EPSL 2019: chlorite schist seal at the subduction interface

Cascadia: Audet & Schaeffer, Science Adv. 2018

Sealed down to ~40 km

(i)

BY

NE Japan: Kita et al., GRL 2006 Sealed down to ~90 km