Observations of turbulence at a near-surface temperature front in the Arctic Ocean

Zoe Koenig, Ilker Fer, Eivind Kolås, Trygve O. Fossum, Petter Norgren, and Martin Ludvigsen

Contact: zoe.koenig@uib.no

BJERKNES CENTRE for Climate Research

A. INTRODUCTION.

basins. Dynamics at the fronts is still poorly understood in the Arctic.

the Nansen Basin away from topography, 4-5 km away from the sea ice edge (Figure 1).

B. MAPPING OF THE FRONT

E. CONCLUSION

 Strong lateral and vertical variability was observed at an ocean front close to the sea ice edge in the Nansen Basin

- Surface buoyancy fluxes and wind stress were the main sources of turbulence in the mixed layer
- Conditions were **favorable** for **forced**

symmetric instability, which could contribute to increase turbulence below the mixed layer

Reference: Koenig Z. et al., (2020) Observations of turbulence at a near-surface temperature front in the Arctic Ocean, J.Geophys. Res. Oceans doi: 10.1029/2019JC015526

This work was funded by the Research Council of Norway through the project The Nansen Legacy (RCN # 276730).

CONTACT INFORMATION

Allégaten 70, NO-5007 Bergen | Tel: +47 55 58 98 03 | Fax: +47 55 58 43 30 | post@bjerknes.uib.no | bjerknessenteret.no

