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Yield gap is a constant threat in agriculture

Reduces farmer’s income and can undermine the sustainability of 

agricultural practices.

 Water scarcity in soil is one key causes for reduced crop performance

 Other causes such as nutrients availability, pests, disease and weeds 

contribute to further yield gaps

An accurate soil description is key to simulate 

and predict the effects of water scarcity

Atmospheric conditions

Soil characteristics

Yield potential

Water-limited 
yield potential

0                  Yield (%)            100 

Gap
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Accurate soil description

And what is the added value? For example in:

 Hydrological and agro-ecosystem modelling

 Precision agriculture (management zones)

 Yield simulation and prediction

Can geophysics-based soil mapping fill this gap?

- Geophysics

- EMI inversion

- Soil sampling

- Lab analysis

- Remote sensing

- Soil map

Still challenging!

Large-scale
(~10 km2 or more)

Small-scale
(few m2)

Field-scale
(~1 to 5 ha)

Intermediate
(~1 km2)

General-purpose maps are often not detailed enough
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Electromagnetic Induction EMI

Measures the apparent electrical conductivity (ECa) of the ground.

ECa is related to texture, layering, water content, temperature, and 

other characteristics of the soil.

Different sensitivity of EMI instrument for 

six different coil distances

Increased distance between transmitter and receiver 

results in an increased depth of investigation

Modern multi-configuration instruments can measure multiple 

depths of investigation simultaneously.

High Resolution:

 In line resolution = ~30 cm

 Measurement lines every 2.5 m

Fast Methodology:

 Measure 1 ha in ~1 hour
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1x1 km study area

Soil heterogeneity affects crop 

development during water scarcity.

Most detailed available 

soil maps probably cannot 

reproduce these patterns

Water stress in silage maize 

and sugar beet

Courtesy of F. Jonard

The thickness of loess top soil overlying coarse layers 

and the characteristics of these soils is key to 

understand and simulate the occurrence of water stress.
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From EMI measurements to an EMI-based soil map

ECa 

(mS/m)

46,6

1,24

Clustering of ECa-maps with 18 soil 

units and 100 sampling locations

Quantitative soil profiles 

available in each soil unit

Six ECa maps were available after 

measuring the study area

1) EMI measurements resulted in six ECa maps with depth of investigation 

between 0.5-2.7 m. These maps were combined in a multiband image.

2) The resulting multiband image that was analyzed with a supervised 

image classification technique (cluster soils with similar signatures).

3) Direct soil sampling at 100 locations and laboratory analysis provided 

quantitative soil description up to 2 m depth (texture and horizonation)
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Comparison with patterns in crop stress

Correctly classified cells:

Ability of the high resolution soil map to reproduce water stress patterns on sugar beet

 Upper Terrace = 76.6%

 Lower Terrace = 91.1%

How to valorize and exploit these quantitative information?
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Agro-ecosystem modelling using EMI-based data

The agro-ecosystem model AgroC was used to simulate soil-crop 

interaction and crop growth on the 1km2 study area.

One AgroC model was set-up in each unique soil-crop combination:

 80 different model set-ups (each with one soil unit and one crop)

Meteorological information for 2016 were used:

 (e.g. rain, temperature, humidity, solar radiation).

Geophysics-based soil map Land use map (2016) Unique soil-crop combinations
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Agro-ecosystem model AgroC

AgroC is a 1-D numerical model that couples three modules:

 SOILCO2: vertical water, heat, and CO2 fluxes

 RothC: turnover of organic carbon

 SUCROS: crop growth and organic matter accumulation rates

Water content (cm3/cm3) Pressure head (cm) Sugar beet water stress 

Pressure head influences crop stress (Feddes 1982) and reduces:

 Root water uptake

 Carbon assimilation and increase of biomass
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Soil hydraulic parameters to feed AgroC model

Horizon Clay (%) Silt (%) Sand (%) Gravel (%)
BD

(g/cm3)
θs θr α n

Ks

(cm/h)

Ap 17.1 63.0 19.8 10.8 1.38 0.067 0.415 0.023 1.330 0.275

Ah 17.1 63.0 19.8 10.8 1.42 0.066 0.396 0.021 1.330 0.206

Bg 21.3 58.0 20.6 14.0 1.49 0.078 0.363 0.018 1.307 0.114

2C 20.3 41.7 38.0 54.4 1.99 0.078 0.195 0.009 1.302 0.002

Soil unit A1a (coarse sediments)

Soil hydraulic parameters calculated using pedotransfer function 

(Rawls & Brakensiek 1985) for each horizon.
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Horizonation and soil hydraulic 

parameters of each horizon are used in 

AgroC to simulate soil water content 

dynamics given an atmospheric input.
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Agro-ecosystem stress simulation

Clear difference in leaf area index (LAI) and weight of storage

Simulated LAI Simulated weight of storage organs

Simulations of sugar beet in 2016 with different soil profiles
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Field-scale simulation of sugar beet

Patterns in sugar beet 

and soil classes Simulated LAI (lines) vs satellite LAINDVI (dots) and 

productivity on the four soils

Four soil units present 

in the analyzed field

A1a A1b A1c A1d

Satellite derived LAI and simulated LAI at two different dates

Simulated LAI well matches observed LAINDVI from satellite.

5.5

LAI

0

Compared with LAINDVI obtained from RapidEye satellite images 

for 2016 (Ali et al. 2014).
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Simulation of LAI (km2 scale)

AgroC simulation of six crop types:

Sugar beet

Corn

Simulated LAI well match observed LAINDVI.

Potato

Winter barley

Winter raps

Winter wheat

Land use in 2016

Satellite derived LAI and simulated LAI throughout the 2016 growing season

14th March 20th April 28th May 12th August 8th September
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Maps of simulated yield
 100% = not limited by 

water

 Sugar beet and winter 

barley match well actual 

harvest data

 Corn and winter wheat 

correspond to literature 

values

Map of the simulated productivity at harvest of sugar beet  

What is the added value of geophysics-based compare to commonly-

available maps?
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Added value compared to conventional soil maps

A geophysics-based soil map provides:

 Quantitative information allows large-scale simulation

 Identify and simulate small-scale patterns

Geophysics-based soil map Soil taxation map Soil map 1:5000

Further AgroC simulations were set-up using information from two 

commonly available soil maps and compared to the EMI-based.
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Added value in simulation of LAINDVI

 Slight improvements for winter crops at the km2 scale.

 Strong improvements in summer and over soil heterogeneities.

Geophysics-based 1:5000 Soil map Soil taxation map

Date RMSE R2 RMSE R2 RMSE R2

March 0.62 0.84 0.63 0.83 0.79 0.72

April 1.07 0.72 1.09 0.72 1.84 0.45

May 0.64 0.93 0.67 0.92 1.01 0.81

June 0.64 0.89 0.69 0.88 0.86 0.84

August 0.64 0.47 0.89 0.39 0.70 0.38

September 0.56 0.78 0.78 0.65 1087 0.50

Winter crops

Summer crops

Fields
Geophysics

-based

1:5000 

map

Taxation 

map

F-12 0.72 0.73 0.73

F-47 0.51 0.45 0.43

F-01 0.45 0.53 0.88

F-13 0.56 0.73 0.73

F-48 0.62 0.78 0.90

Heterogeneous soils

Relatively homogeneous soils

RMSE and R2 of the 1km2 simulations of LAI

With Geophysics-based soil map, average reduction of RMSE of 

25% and 31% in heterogeneous areas and for summer crops.
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Added value of geophysics-based soil mapping

Simulated water-limited productivity of four crops 

in 2016 within the study area  

Simulate time series of:

 Productivity at harvest

 Stress (caused by water scarcity)

 LAI that matches satellite LAINDVI

Agricultural applications:

 Optimize irrigation

 Maximize productivity

 Evaluate management practices

 Costs/benefits estimation

Environmental applications:

 Estimate carbon sequestration

Image classification of EMI produces high resolution and large-

scale soil maps provided with quantitative layering and texture.

Slide 16



Optimize irrigation with perfect 7-day forecast

 Economical and environmental irrigation cost (€ & CO2 emissions)

By adding irrigation water, we can decrease water stress and 

increase crop productivity.

~2200 m3/ha

=

+23.3 t/ha 

wet beets

Plus ~27.5%

Apply
Irrigation!
Stress

reduction

Apply
Irrigation!

Add weekly irrigation to keep water stress below a certain 

level considering seven days of forecasted precipitation

Precipitation Weekly irrigation
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ATLAS: real-time optimized irrigation

Experimental apple orchards 

plots in Agia (Greece)

+

Digital Soil Mapping

(EMI & ground truth)

Network of:

-SoilNet sensors

-Cosmic Ray 

Neutron Probes

Combination of:

+ Near real-time monitoring 

of soil moisture and 

matrix potential

+ Weather forecast

+ Hydrological modelling

+ Crop modelling

= Optimized irrigation 

scheduling

Make our farmers happy!
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