New strategies for chemistry-transport modelling of volcanic plumes: application to the case of Mount Etna eruption on March 18, 2012

EGU 2020

ITS2.14 / GMPV 10.3: Volcanic Plumes: Insights into Volcanic Processes, Impacts on the Environment and Health Hazards

Mathieu Lachatre¹, Sylvain Mailler^{1,2}, Laurent Menut¹, Solène Turquety¹, Pasquale Sellitto³, Henda Guermazi³, Giussepe Salerno⁴, Tommaso Caltabiano⁴ and Elisa Carboni⁵

An observation: 3D models seems to poorly reproduce plumes' vertical spreading

Test on a practical case : March 2012 Etna volcanic eruption

Instruments and model :

IASI Instrument SO₂ Columns

(cc)

Results

Impact of injection height

- \succ SO₂ max column vertical profile time evolution
- Higher vertical resolution allows better representation of plume's features

DL scheme strongly mitigate SO₂ dispersion

In discussion in GMD https://doi.org/10.5194/gmd-2020-62

Evaluate the impact on plume trajectory

A combinaton of the new developpements and an acceptable increase of vertical resolution provide an optimal modelling solution for long range transports.

