

Drought Propagation as Illustrated by the 2018 Nordic Drought Event

Sigrid J. Bakke⁽¹⁾, Monica Ionita⁽²⁾, and Lena M. Tallaksen⁽¹⁾ (1) Department of Geosciences, University of Oslo, Norway, (2) Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Germany

The event was unique in its northern location of the high-pressure system (Fig.1) as compared to other major European drought events in the last decades (Ionita et al., 2017; Stahl, 2001).

Our aim: investigate the 2018 event from a climatological and hydrological perspective

Meteorological situation was characterized by the 500 mb geopotential height (HGT500) anomaly, using the reference period 1971-2000 (NCEP), as well as the 60yr (1959-2018) rank of the 2018 (high) max temperature and (low) precipitation in Europe (*E-OBS*).

Data Providers

- HGT: NCEP reanalysis: ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.derived/
- Temperature and precipitation: E-OBS v19.0e: surfobs.climate.copernicus.eu/dataaccess/access_eobs.php
- **Streamflow:** The Norwegian Water Resources and Energy Directorate (NVE), Swedish Meteorological and Hydrological Institute (SMHI), Finnish Environment Institute (SYKE) and Danish Environment Portal (DMP)
- **Groundwater:** NVE and Geological Survey of Sweden (SGU)

References:

Gottschalk, L, et al. "Hydrologic regions in the Nordic countries." Hydrology Research 10.5 (1979): 273-286. Ionita, M, et al. "The European 2015 drought from a climatological perspective." Hydrology and Earth System *Sciences* 21 (2017): 1397-1419.

Kirkhusmo, L. A. "Groundwater fluctuation patterns in Scandinavia." NHP-report (1988): 32-35. Stahl, Kerstin. Hydrological drought: A study across Europe. Diss. Institut für Hydrologie der Universität, 2001.

The extreme drought in Northern Europe in 2018

May–August 2018 was analysed on a monthly time scale in three steps following the chronology of drought propagation (data providers in *italic*):

Meteorological drought in Europe was characterized by the standard precipitationevapotranspiration index with a three months accumulation period (SPEI3), using reference period 1971-2000 (*E-OBS*).

Hvdrological data

Hydrological data consists of observed streamflow and groundwater levels with negligible human influence. Fig. 2 and 3 show station locations and seasonal regimes.

The affected Nordic region has high heterogeneity in terrestrial and hydroclimatological characteristics.

> The hydrological aspect of drought propagation is vital as drought impacts are commonly felt on the ground related to freshwater resources and ecosystems.

Hydrological drought in the Nordic region was characterized by the 60yr (1959-2018) rank of the 2018 (low) streamflow in Norway (NVE), Sweden (SMHI), Finland (SYKE), and Denmark (DMP), and 30yr (1989-2018) rank of the 2018 (low) groundwater level in Norway (*NVE*) and Sweden (*SGU*).

Fig.2: Locations and regimes (based on Gottschalk et al., 1979) of the 79 streamflow stations used in the study.

© Authors. All rights reserved

Drought Propagation as Illustrated by the 2018 Nordic Drought Event

Sigrid J. Bakke⁽¹⁾, Monica Ionita⁽²⁾, and Lena M. Tallaksen⁽¹⁾ (1) Department of Geosciences, University of Oslo, Norway, (2) Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Germany

Fig.4: From top to bottom panel: Top-six ranking of highest temperature, top-six ranking of lowest precipitation, SPEI3, top-six ranking of lowest streamflow and top-six ranking of lowest groundwater. All variables are shown for each month May-August 2018 (left-right panel).

Record-breaking high temperatures.

Record-breaking low precipitation was not as widespread as for temperature.

Persistent low precipitation and high temperatures caused **meteorological** drought to develop from May, peaking in July.

Streamflow and groundwater drought developed from June, following a delay in the hydrological system due to antecedent water storages, and in particular snow.

Extent of **record-breaking low** streamflow peaked in July. In August, streamflow drought sustained in southeast, whereas heavy precipitation replenished streamflow in north and west.

A high local variability was seen for groundwater drought, reflecting the variability in hydrogeological properties.

Groundwater tables vary with depth, soil type (a) Delay and aquifer properties, etc. and thus, respond differently to meteorological drivers, such as precipitation and high temperatures.

The 'response delay', i.e. the overall lag between a precipitation time series and groundwater table response, was estimated as the moving average interval that correlated the best with the daily groundwater time series (Fig.6a).

The delay was found valuable together with mean depth (i.e. mean groundwater level below surface; Fig.6b) in explaining the 2018 groundwater drought development (Fig.7).

Groundwater drought emerged in the shallowest wells already in June. With time, extreme conditions were found in wells of increasing depth and response delay. By the end of 2018, 38% of the wells still had rank 1-6.

© Authors. All rights reserved

High variability in groundwater response

Fig.6: Groundwater (a) response delay and (b) mean depth.