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What is poroelasticity and why is it important?

Figure:
http://www.geothermie.de/wissenswelt/lexikon-
der-geothermie/p/poroelastizitaet.html

Poroelasticity is a material
research discipline and relates for
a material the solids deformation
to the fluid flow.

It describes e.g. in geothermal
research the stresses and
interactions in an aquifer.

The mathematical model to
describe this behavior is dated
back to Biot in the 1930s.

Poroelasticity: Modelling of the coherence between water pressure and stresses
in porous or ragged rocks.
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What is our aim?

The aim is referring to [Freeden, Blick, 2013] for the scalar case and [Blick, Eberle,
2019] for the tensorial case to

Construct scaling functions and wavelets that are physically motivated with the
application of post-processing

Introduce low-pass and band-pass filter for the further interpretation of data sets

For this ansatz, we need the fundamental solutions of the corresponding partial
differential equations of poroelasticity.

Please note that our intention is less to do an approximation than to do a further
decomposition of the data sets.
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Quasistatic equations of poroelasticity (QEP)
The quasistatic equations of poroelasticity base on physical laws like the conservation
of linear momentum, conservation of mass or linear elasticity. They are partial
differential equations and given by

−λ+ µ

µ
∇x (∇x · u)−∇2

x u + α∇x p =f ,

∂t (c0µp + α(∇x · u))−∇2
x p =h,

where λ, µ, α and c0 are material parameters.
u is the displacement vector and p the pressure.

Unknown: u(x , t) and p(x , t).

With this, we can define the poroelastic differential operator

Lpe(∂) =

(
−λ+µ

µ
∇x (∇x · u)−∇2

x u + α∇x p
∂t (c0µp + α(∇x · u))−∇2

x p

)
For the construction of the scaling functions and wavelets, we will come back to this
operator later again.
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Fundamental solutions

Another essential component are the fundamental solutions, which can be arranged in
a tensor G(x , t) and are given by

G(x , t) =

(
uCN(x)δ(t) pSt(x)δ(t)

uSi(x , t) pSi(x , t)

)
,

where

uCN
ki (x , t) = C3

1
2π

(
−δki ln(‖x‖) + C4

xixk

‖x‖2

)
δ(t)

uSi(x , t) = C1
x

2π‖x‖2

(
1− exp

(
−‖x‖

2

4C2t

))
pSi(x , t) =

1
4πt

exp

(
−‖x‖

2

4C2t

)
pSt(x , t) = C1

x
2π‖x‖2 δ(t).

Please note that the divergence from the poroelastic operator is meant row-wise.
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If we have a look back at the fundamental solutions, we can see that each of them has
a singularity at the point x = (0, 0). The main idea for the construction of the scaling
functions is, to mollify the fundamental solutions with a Taylor expansion around the
critical singularity. We show an example for the component pSt and regularize this
function in domain with respect to a parameter τ . We write

pSt =
C1

2π
x
‖x‖2 =

1
2
∇x

(
ln ‖x‖2

)
.

Since we want a linear expansion for pSt , we have to do an expansion up to order 2 for
ln ‖x‖2:

1
2

ln
(
‖x‖2

)
≈ 1

2

(
ln τ 2 +

1
τ 2 (‖x‖2 − τ 2)− 1

2τ 4 (‖x‖2 − τ 2)2
)
.

The gradient leads us to

pSt
τ =


C1
2π

x
‖x‖2 , ‖x‖ > τ,

C1
2π ·

x
τ2 ·

(
2− ‖x‖

2

τ2

)
, ‖x‖ < τ.

In the following, τ will be a sequence of monotonically decreasing values, i.e. τ = 2−j ,
j ∈ N0.
We call these regularized functions scale discrete (potential) scaling functions.
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In the figure below, we can see the fundamental solution pSt (upper left) and the
regularized varieties for j = 0 (upper middle), j = 1 (upper right), j = 2 (lower left),
j = 3 (lower middle) and j = 4 (lower right).
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Wavelets

The family {Wτj (∆; ·)}j∈N defined via

Wτj (∆; ·) = Gτj (∆; ·)−Gτj−1 (∆; ·)

is called a scale discrete (potential) wavelet function. We call

Φτj (‖x − y‖) = Lpe(∂)Gτj (∆; ‖x − y‖)

the scale discrete (source) scaling function and

Ψτj (‖x − y‖) = Φτj (‖x − y‖)− Φτj−1 (‖x − y‖)

the scale discrete (source) wavelet function.

We will have a closer look at the source scaling functions, because these are the ones
we are interested in.
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As an example, we will show here the source scaling functions Φ11,τ and Φ12,τ (next
slide) for j = 0 (first column), j = 1 (second column) and j = 2 (third column) and
introduce the theoretical requirements that are necessary.

Due to the construction, all source scaling functions have compact support and this
support gets smaller with increasing j (i.e. decreasing τ ).
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Here we can see the source scaling function Φ12,τ for several j .

Please note that in the case of the time-dependent Φ31,τ , Φ32,τ and Φ33,τ (not shown
here), we have to restrict the support in time with a variable t0 depending on τ such
that the support also gets smaller in time with increasing j .
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We show the necessary theoretical requirements to the source scaling functions i.e.
the following approximate identity has to hold true for all x ∈ B and t ∈ T

lim
τ→0
τ>0

∫
B

∫
T

Φτ (x − y , t − θ)f (y , θ) dθ dy = f (x , t).

For the proof it is necessary to have∫
R2

∫
R

Φτ (y , θ) dθ dy = I,

which is fulfilled in our case. Here I is the identity matrix.

The approximate identity can be shown for the several components of Φτ with the help
of the mean value theorem and the fact that the integral over the positive parts of the
functions can be estimated by a constant (the proof is motivated by techniques used for
a different problem in [Blick, Eberle, 2019]).
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