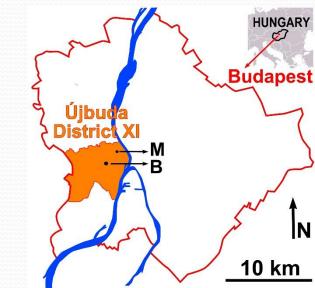
Comparison of surface temperature over different natural and artificial urban surfaces

Zsuzsanna Dezső, Rita Pongrácz, Judit Bartholy

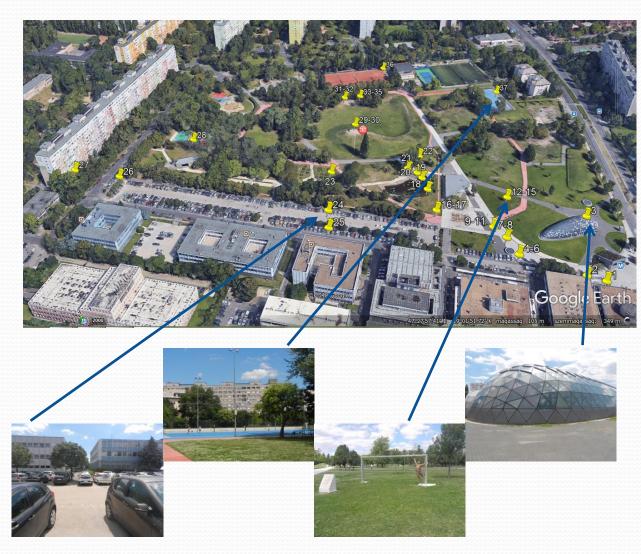
Eötvös Loránd University Department of Meteorology Budapest, Hungary

EGU General Assembly 2020


Introduction - Motivation

- Urban Climate Research at the Department of Meteorology Eötvös Loránd University since the late 1990s
- Regular urban climate measurements in the framework of a long-term cooperation between the University and the Department of Environment at the Municipality of Újbuda (district XI of Budapest)
- Different measurement projects in the District XI
 - UHI analysis based on satellite data
 - Air temperature measurements at different sites
 - <u>Surface temperature measurements in a public park and</u> in a busy transportation center

Methodology


- Aim: obtain information about the thermal properties of different urban surfaces, objects
- Instrument: Voltcraft IR-280 infrared thermometer
- Measuring sites:
 - Móricz Zsigmond Square (Artificial Covered Site) -- M
 - Bikás Park (Green Park Site) -- B
- Measurement campaigns:
 - July 2-5, 2018 (four measurements per day)
 - May 17 and 23-26, 2019, June 6-7, 2019 (three measurements per day)

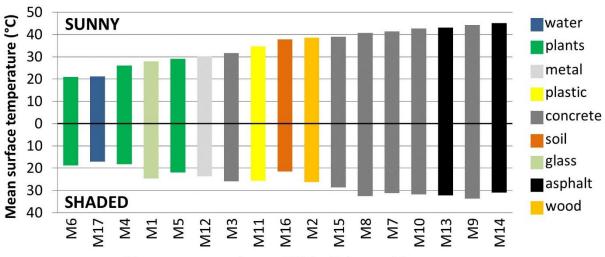
Measuring site - Bikás Park

number	description	surface material
Bı	market sign	concrete
B2	pillar in the market	metal
B ₃	subway station building	glass
B4	dark gray pavement blocks	concrete
B5	red pavement blocks	concrete
B6	gray pavement blocks	concrete
B7	dark gray pavement blocks	concrete
B8	light gray pavement blocks	concrete
B9	bench	wood
B10	bench	metal
Bu	table	concrete
B12	statue of Grosics	metal
B13	lawn at the statue of Grosics	plant
B14	lawn under the tree	plant
B15	tree	plant
B16	red rubber paving	rubber+polyurethane
B17	red pavement	concrete
B18	reed	plant
B19	lake	water
B20	lake footbridge	wood
B21	gravel pavement	stone
B22	tree	plant
B23	bare soil	soil
B24	stony asphalt road	asphalt
B25	asphalt road	asphalt
B26	shrub	plant
B27	concrete building	concrete
B28	playground pavement	concrete
B29	statue of Bull	metal
B30	bare soil	soil
B31	grey rubber paving	rubber+polyurethane
B32	red rubber paving	rubber+polyurethane
B33	bicycle handlebars	plastic
B34	metal pipe	metal
B ₃₅	public workout equipment	metal
B36	tennis court cover	clay
B ₃₇	football field blue rubber paving	rubber+polyurethane

 (\mathbf{i})

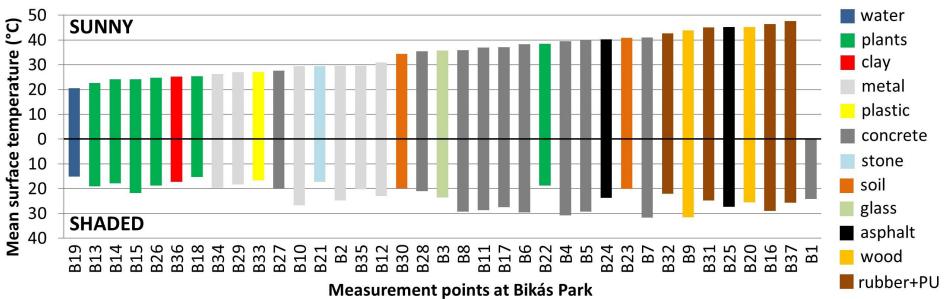
(cc

Measuring site - Móricz Zsigmond Square


(†)

(cc

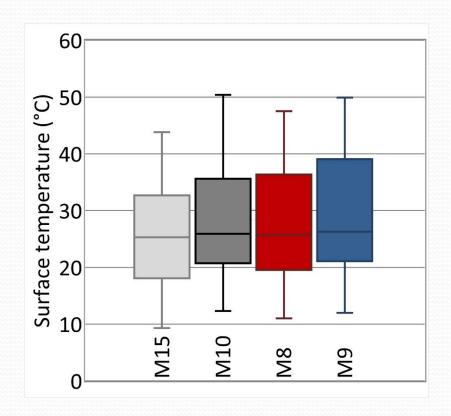
number	description	surface
2	-	material
M1	subway station building	glass
M2	bench	wood
M3	Bistro wall	concrete
M4	lawn	plant
M5	tree	plant
M6	reed	plant
M ₇	dark gray pavement blocks	concrete
M8	red pavement blocks	concrete
M9	blue pavement blocks	concrete
M10	gray pavement blocks	concrete
M11	handrail	plastic
M12	tram rail	metal
	asphalt pavement between	
M13	tram rails	asphalt
M14	road	asphalt
M15	light gray pavement blocks	concrete
1	bare soil at Allée shopping	
M16	center	soil
	water surface at Allée	
M17	shopping center	water


Results

Mean surface temperature of measurements around noon. Colours indicate the surface materials of the points. The upper part of the diagram (positive direction) represents the sunny, while the lower part (negative direction) represents the shaded measurements at the same point.

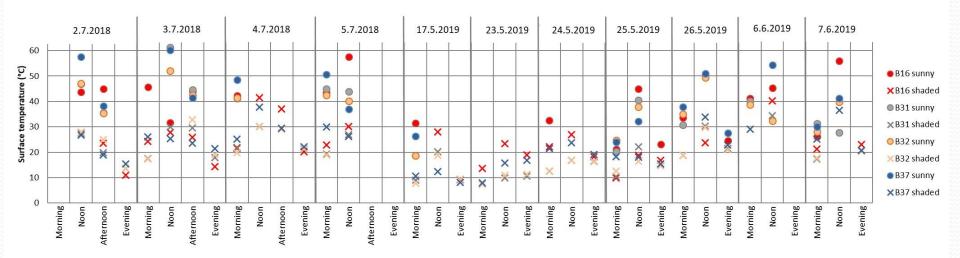
 $(\mathbf{\hat{I}})$

Measurement points at Móricz Zsigmond Square


-

Results - The role of colours

Surface temperature distribution of concrete pavement surfaces of different colours at Móricz Zsigmond Square.


The box-and-whisker diagram includes the minimum and the maximum (bottom and upper end of the whiskers, respectively), the lower and upper quartiles (bottom and top of the box, respectively) and the median (line inside the box) of all the available data.

The colours of the pavement blocks: M15 - light grey, M10 - grey, M8 - red, M9 - blue.

Results - The role of colours and shading

Surface temperature measurements of different rubber-paved surfaces at Bikás Park measuring site. Circles and crosses represent temperatures at sunny and shaded points, respectively. The colours of the rubber surfaces are as follows: B16 - red, B31 - grey, B32 - red, B37 - blue.

Conclusions

- Detailed statistical analysis was performed to investigate the thermal properties of various urban surfaces, e.g. pavements, walls, street furniture, sport facilities, water and plant surfaces.
- Extremely high surface temperatures can occur in summer, especially when the surface is directly exposed to sunlight.
- The <u>hottest points</u> are dark painted wood objects, asphalt and rubber-paved surfaces with sunny conditions, the <u>coolest</u> surfaces are natural covers, i.e. water and vegetation surfaces.
- In the case of most materials, shading reduces the surface temperature substantially.
- Surface colours definitely influence the thermal properties; thus choosing the appropriate colour can effectively reduce the surface temperature.
- Our study showed that the adverse effects of the urban climate can be effectively mitigated
 - by selecting appropriately the covering materials,
 - by increasing the proportion of natural vegetation and water surfaces,
 - by appropriate shading of surface covers with less advantageous thermal properties.

Thank you for your attention!

In-situ measurements were completed by MSc students of the Eötvös Loránd University: D. Rumpler, A. Berényi, R. Dávid, D. Incze, D. Nagy, V. Szalai, D. Topál, A. Tóth. Thanks for their work!

Research leading to this study was supported by the following sources: the Hungarian National Research, Development and Innovation Fund (grants K-129162 and K-120605), the Bolyai János Fellowship of the Hungarian Academy of Sciences, the Hungarian Ministry of Human Capacities under the ELTE Excellence Program (783-3/2018/FEKUTSRAT).

The results of this study were published in: Dezső, Zs., Pongrácz, R., & Bartholy, J. (2019). Analysis of surface temperature measurements over complex urban sites. *Geographica Pannonica*, 23(4), 337-346. DOI: 10.5937/gp23-23844