ECOSYSTEM SERVICES

Exploring Driving Forces of Avian Diversity in a Subtropical Asian City

Chun-Wei Huang¹, Yi-Lei Hsu², Hui-Xian Lau³, and Jerome Chie-Jen Ko⁴

¹Ming-Chi University of Technology, General Studies Center, Taiwan (cwhuang@mail.mcut.edu.tw; chunwei.huang@aya.yale.edu)

National Taiwan University, Department of Civil Engineering, Taiwan

³National Taiwan University, Department of Geography, Taiwan

⁴Taiwan Endemic Species Research Institute, Taiwan

- Introduction
- Methods & materials
- Results
- Discussion

ECOSYSTEM SERVICES

Introduction

An Era of Global Urban Expansion

- By 2030 the global urban population is estimated to be 70 % or 6.3 billion, nearly doubling the urban dwellers worldwide in 2010 (Seto et al., 2013).
- Urban areas are expanding on average twice as fast than their populations (Angel et al., 2011; Seto et al., 2011).

Urban-Rural Gradient

(McKinney, 2002)

Urban-Rural Gradient

Why high biodiversity exists in some intermediate disturbance areas along a urban-rural gradient?

Synthesis from 105 studies (McKinney, 2008)

Luxury Effects along a Socio-economic Gradient

- Increasing urbanization may not only represent challenge in habitat conservation but also opportunities for environmental improvement (Elmqvist et al., 2013; Chamberlain et al., 2019).
- In desert city, well-watered lawn areas are added to increase open habitats in an urban matrix. As such, the phenomenon that biodiversity increases with the socio-economic status, termed "luxury effect" (Hope et al., 2013).
- However, few studies of the luxury effect have been done in the tropics (Leong et al., 2018).

Driving Forces along a Urban-Rural Gradient

Methods and Materials

Taiwan Breeding Bird Survey

Ranges of data

- 2009-2016
- c. 0.4 million records
- 480 sites

Methods

- Point Count
- 6min. duration, 100m radius circle

Data available at GBIF

https://www.gbif.org/zhtw/dataset/f170f056-3f8a-4ef3-ac9f-4503cc854ce0

The Greater Taipei Metropolitan Area

To reduce the influences from altitude, we select 52 observation sites under 100 a.s.l. for avian species

	Taipei	New Taipei	Keelung	Taoyuan	Total
Population	2,645,041	4,018,696	368,893	2,249,037	9,281,667
Area size	272	2,053	133	1,221	3,679
Population density	9,732	1,958	2,779	1,842	2,523

Backward Stepwise Regression

- AIC-based stepwise deletion of predictors and interactions of the full model.
 - Number of samples = 52 bird sites below 100m
 - Number of variables = 34

Methods

- Start with all variables in the model (full model).
- Iteratively remove the variable with the largest pvalue (the least statistically significant).
- Stop when the model with all predictors are statistically significant.

Explanatory Variables

		Variables		Abbreviations	
E		Elevation		Elevation	
		Temperature Mean		Temperature Mean	
	Environmental factors		cient of Variation of erature	Temperature CV	
	luctors	Precipitation Mean		Precipitation Mean	
		Coefficient of Variation of Precipitation		Precipitation CV	
	Socio-	Population density		Population density	
	economic factors	Education ratio		Education ratio	
		Median income		Median income	
		Class area	Grassland	CA _{Grassland}	
			Wetland	CA _{Wetland}	
			Built up	CA Built up	
	Landscape-		Forest	CA _{Forest}	
	ecological factors		Road	CA _{Road}	
			Waterbody	CA _{Waterbody}	
			School	CA _{School}	
			Urban park	CA _{Urban park}	

Explanatory Variables

Variables		ables	Abbreviations	
	Cohesion index	Grassland	Coh Grassland	
Landscape- ecological factors		Wetland	Coh Wetland	
		Built up	Coh Built up	
		Forest	Coh Forest	
	×	Urban park	Coh _{Urban park}	
	Edge density	Grassland	ED Grassland	
		Wetland	ED _{Wetland}	
		Built up	ED Built up	
		Forest	ED _{Forest}	
		Urban park	ED _{Urban park}	
	Sum of edge length	Built up - Wetland	ES Built up, Wetland	
		Built up - Forest	ES Built up, Forest	
		Built up - Waterbody	ES Built up, Waterbody	
		Built up - Urban park	ES Built up, Urban park	
		Forest - Waterbody	ES Forest, Waterbody	
	Large Patch Index		LPI	
Imp		ervious surface ratio	Impervious surface ratio	

Regression Results

	Coefficients	Std. Error	t value	Pr (> t)
(Intercept)	-0.5476	0.4587	-1.194	0.240221
Median income	-0.7998	0.2401	-3.331	0.001971 **
Elevation	0.2747	0.1581	1.737	0.090683 ·
Elevation CV	0.4335	0.2043	2.121	0.040643 *
Temperature Mean	0.5294	0.2093	2.530	0.015792 *
Temperature CV	0.8894	0.2258	3.938	0.000350 ***
CA Forest	-1.3513	0.3050	-4.431	8.05E-05 ***
CA Waterbody	-0.4665	0.2527	-1.846	0.072879 ·
Coh Built up	0.4195	0.2459	1.706	0.096472 ·
Coh Forest	0.4695	0.1630	2.881	0.006559 **
ES Built up, Urban park	0.3277	0.2514	1.304	0.200436
ES Built up, Wetland	-0.4864	0.2447	-1.987	0.054314 ·
ES Built up, Waterbody	0.4941	0.1707	2.894	0.006336 **
ES Forest, Waterbody	0.9237	0.2493	3.705	0.000687 ***
Impervious surface ratio	-0.6024	0.3436	-1.753	8.79E-02

Significant differences : P<0.1, *P<0.05, **P<0.01, and ***P<0.001.

Urban-rural gradient – Median income

Urban-rural gradient – Temperature CV

Urban-rural gradient – Class Area of Forest

Urban-rural gradient – Cohesion of Forest

Urban-rural gradient – Sum of Edge Length between Built up and Waterbody

Urban-rural gradient – Sum of Edge Length between Forest and Waterbody

Discussion Socio-economic factors

- Human activities driven by socio-economic status shape urban microclimate, such as urban water cycle. As such, many studies have pointed out the "luxury effect" on urban plant diversity (Hope et al., 2003; Bigirimana et al., 2012; Avolio et al., 2015; Leong et al., 2018)
- Birds depend directly on plant species for food and nesting. As such, their diversity may be correlated with socioeconomics (Leong et al., 2018)
- However, our study indicates negative relationship between income and bird diversity in a subtropical city.

Discussion Landscape-ecological factors

- Landscape patterns affect the avian diversity in Taipei, Taiwan.
- High avian diversity exists in landscapes with long edge between forest and water body, aggregated forest and built-up.
- Conserving landscapes with birds preferred features may be needed to maintain the avian diversity in the study area.

References

- 1. Angel, S., Parent, J., Civco, D. L., Blei, A., & Potere, D. (2011). The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Progress in Planning, 75(2), 53-107.
- 2. Avolio, M., Pataki, D. E., Gillespie, T., Jenerette, G. D., McCarthy, H. R., Pincetl, S., & Weller-Clarke, L. (2015). Tree diversity in southern California's urban forest: the interacting roles of social and environmental variables. Frontiers in Ecology and Evolution, 3, 73.
- 3. Bigirimana, J., Bogaert, J., De Cannière, C., Bigendako, M. J., & Parmentier, I. (2012). Domestic garden plant diversity in Bujumbura, Burundi: role of the socio-economical status of the neighborhood and alien species invasion risk. Landscape and Urban Planning, 107(2), 118-126.
- 4. Elmqvist, T., Fragkias, M., Goodness, J., Güneralp, B., Marcotullio, P. J., McDonald, R. I., ... & Wilkinson, C. (2013). *Urbanization, biodiversity and ecosystem services: challenges and opportunities: a global assessment* (p. 755). Springer Nature.
- 5. Hope, D., Gries, C., Zhu, W., Fagan, W. F., Redman, C. L., Grimm, N. B., ... & Kinzig, A. (2003). Socioeconomics drive urban plant diversity. Proceedings of the national academy of sciences, 100(15), 8788-8792.
- 6. Leong, M., Dunn, R. R., & Trautwein, M. D. (2018). Biodiversity and socioeconomics in the city: a review of the luxury effect. Biology letters, 14(5), 20180082.
- 7. McKinney, M. L. (2002). Urbanization, Biodiversity, and ConservationThe impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems. Bioscience, 52(10), 883-890.
- 8. McKinney, M. L. (2008). Effects of urbanization on species richness: a review of plants and animals. Urban ecosystems, 11(2), 161-176.
- 9. Seto, K. C., Parnell, S., & Elmqvist, T. (2013). A global outlook on urbanization. In Urbanization, biodiversity and ecosystem services: Challenges and opportunities (pp. 1-12). Springer, Dordrecht.