

Method and Tools

CHANGE DETECTION: Maximum soil moisture range within the study period for each acquisition date [1]

- Negligible roughness variation with 100m resolution
- Elaboration with equal vegetation condition
- Backscatter coefficient variation only due to soil mositure variation

Vegetation Indices Tested

Optical Indices	SAR Indi
$NDVI = \frac{NIR - RED}{NIR + RED}$	$FVI = \frac{\sigma_0^V}{\sigma_0^V}$
$NDWI = \frac{NIR - SWIR}{NIR + SWIR}$	$RVI = \frac{4\sigma_0}{\sigma_0^{VV} + \sigma_0^{VV}}$
NIR: near infrared SWIR: short wavelength infrared	σ_0^{VV} : VV polarized ba σ_0^{VH} : VH polarized ba

Punctual Validation

$N^{\circ} data 272$		NDVI	NDWI	FVI	RVI
$U.M. \ {m^3\over m^3}$	MAE	0.042	0.065	0.053	0.058
$c.m.$ $\frac{1}{m^3}$	bias	0.035	0.059	0.045	0.048
	RMSE	0.073	0.097	0.083	0.088

Combined use of Sentinel SAR and optical data for soil moisture estimation

Giulia Graldi¹, Simone Bignotti¹, Marco Bezzi² and Alfonso Vitti¹

¹ Dept. of Civil, Environmental and Mechanical Engineering, University of Trento, Italy - ² Tera Group, Trento, Italy

Octave

lices

 \overline{VH}

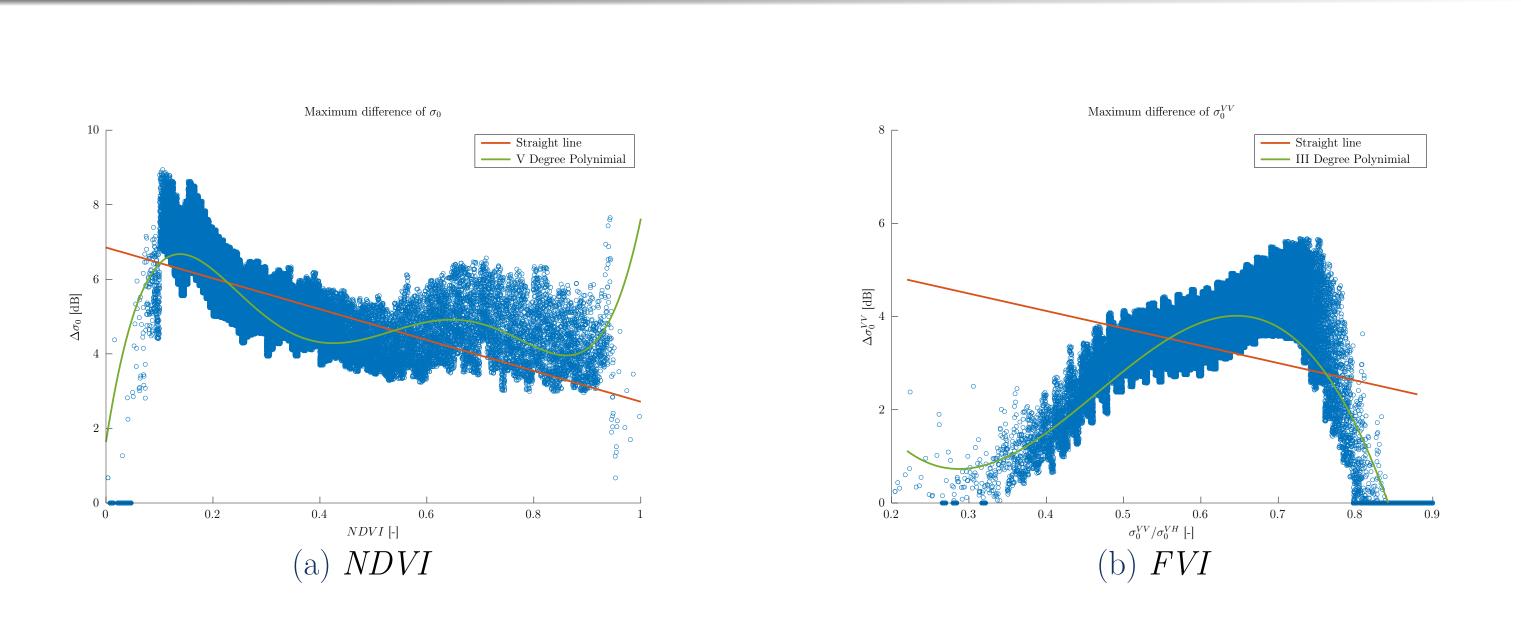
 σ_0^{VH} $+\sigma_0^{VH}$

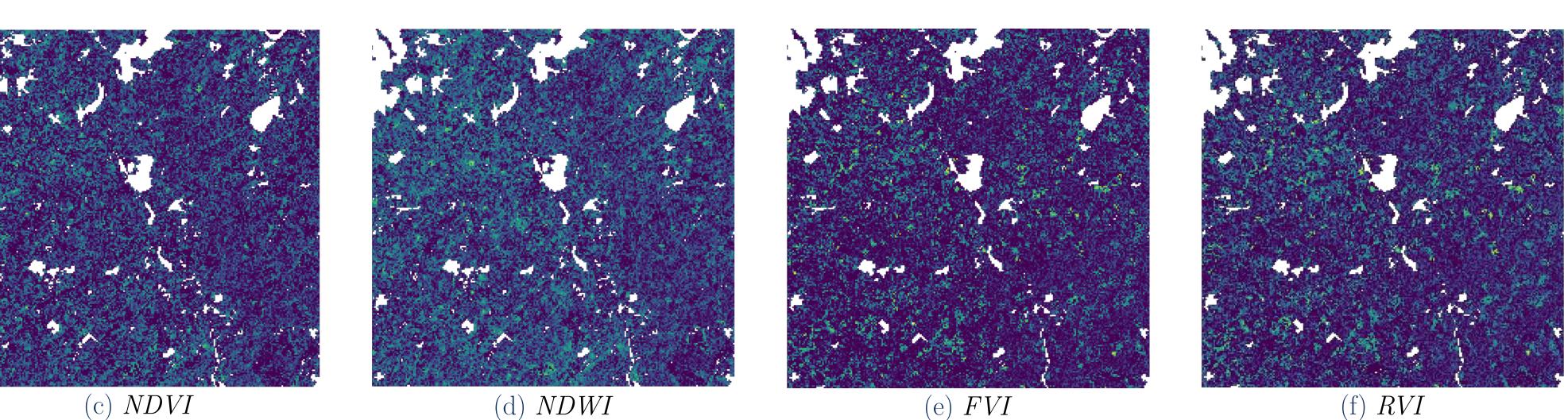
backscatter coeff. backscatter coeff. Trend of the maximum σ_0^{VV} variations Examples of the distribution of the maximum differences of σ_0^{VV} in the study sample in function of two vegetation indices. In the used method the fitting polynomial of the distribution is used in the soil moisture assessment to scale lower σ_0^{VV} differences. The red fitting polynomial is the one proposed in literature, in green the one used in the elaborations.

Maps of soil moisture variation

Maps produced with optical indices have a more speckled spatial distribution if compared to the ones produced with SAR indices.

L	
Soil r	noisture variation [$\frac{m^3}{m^3}$]
	<= 0.05
	0.05-0.1
	0.1 - 0.2
	0.2 - 0.3
	0.3 - 0.4
	> 0.4
<u> </u>	


Conclusions and Future Developments


- Best performance for NDVI followed by both SAR indices. It would be interesting to further investigate the possibility of using only SAR images with a wider dataset, since SAR is not weather dependent.
- More recognisable spatial patterns ascribable to agricultural fields for SAR indices elaborations.

- Agricultural Mask: Corine Land Cover 2018

Study Area: $900km^2$ of agricultural fields, Spain Study Period: 2018 (18 paired images)

Preliminary Results

(d) NDWI

Soil moisture variation on 14-08-2018

- Increase of the dataset
- Study of the 2 trends of the SAR indices
- Comparison of SAR and optical indices
- Temporal study of the spatial variations
- Elaboration with higher resolution

Dataset and Study Case

• Satellite Images: Sentinel 1 (VV,VH polarization), Sentinel 2 • **Observations:** REMEDHUS soil mositure network (20 sites)

(f) RVI

References and Contacts

[1] Gao, Q. (2017). "Synergetic Use of Sentinel-1 and Sentinel-2 Data for Soil Moisture Mapping at 100 m Resolution". In: Sensors 17, p. 1966.

giulia.graldi@unitn.it alfonso.vitti@unitn.it bezzi@tera-group.it