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Atmospheric Boundary Layer

I Fluid flow in the atmospheric boundary layer is affected by various factors such as the
topography, roughness elements, and thermal stratification.

I Thus, boundary-layer turbulence is significantly different from turbulence that is
statistically homogeneous and isotropic.
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Deviations from K41 I

I The Kolmogorov 1941 (K41) phenomenological theory applies to statistically
homogeneous and isotropic turbulence.

I This does not apply to turbulent flows in the atmospheric boundary layer, because they
are not homogeneous and isotropic.

I Furthermore, K41 phenomenology leads to mono-fractal or single-exponent scaling of
velocity structure functions.

I We use measurements of the flow velocity in the canopy sublayer above the Hyytiälä
forest to examine the multifractality and anisotropy of velocity structure functions in this
sublayer.
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Methods: MF-DFA and MMA

I We have employed the multifractal detrended fluctuation analysis (MF-DFA) and its
extension, the multiscale multifractal analysis (MMA), to examine the nature of the
multiscaling of turbulent fluctuations of velocity and temperature time series.

I In particular, we calculate the Hurst exponent h(q) (also a scale-dependent version h(q, s))
and the singularity spectrum f (α), the Legendre transform of τ(q) = qh(q)− 1; here,α is
the singularity strength or the Hölder exponent.
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MF-DFA algorithm
Given a time-series xk, k = 1, . . .N that has a compact support, we carry out the following
calculations:

1. calculate profile: Y(i) =
∑i

k=1 (xk − 〈x〉)
2. partition the time series into Ns = bN/sc intervals of length s and calculating the order-m

detrended fluctuation:F2(ν, s) = 1
s
∑s

i=1

{
Y(i + (ν − 1)s)− ym

ν (i)
}2

, ν = 1, . . .Ns

3. calculate the averaged q-th order fluctuation for scale s: Fq(s) =
[

1
Ns

∑Ns
ν=1 F2(ν, s)q/2

]1/q
, where q

can take any real value.

4. calculate the Hurst exponent h(q) from the scaling form: Fq(s) ∼ sh(q).

Once we have h(q), we can calculate the singularity strength or Hölder exponentα and the
singularity spectrum f (α) as the Legendre transform of τ(q) = qh(q)− 1:

f (α) = qα− τ(q); α =
dτ(q)

dq
. (1)

.
6 / 15



Introduction Methods Results Conclusions References

MMA Algorithm

In the MF-DFA, the (best-fit) slope of the following line in the log-log plot of Fq(s) versus s, over
the entire scale range of scales s, yields h(q):

ln Fq(s) = h(q) ln s + c; (2)

However, different ranges of scales are often seen to have different scaling exponents, so we
can, alternatively, calculate the exponents over moving windows:

ln Fq(s) = h(q, s) ln s + c, s ∈ [slower(s), supper(s)] (3)

over a window [slower(s), supper(s)] determined by the scaled s.

7 / 15



Introduction Methods Results Conclusions References

h(q) and f (α)

I h(q) depends on the nature of correlations between the fluctuations of xk. For a
monofractal time series, h(q) is a constant and independent of q.

I For persistent (long-range correlated) time series, 1 > h(q) > 0.5, whereas, for an
anti-persistent (long-range anti-correlated) time series, h(q) < 0.5. For an uncorrelated,
white-noise-type time series, h(q) = 0.5.

I The width of the plot of f (α) versusα, δα = (αmax − αmin), and the range of h(q),
δh = (h(qmin)− h(qmax)), serve as measures of the degree of multifractality.
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MF-DFA results I
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Figure 1:Representative plots of h(q) versus q (a,c)
and corresponding plots of f (α) versusα (b,d) for
the original and shuffled series (dashed) from
MF-DFA for at heights z = 23.3m (a,b) and z = 33m
(c,d).

The shuffled series (subscript shuff ) is monofractal,
with h(q, s) = 0.49± 0.01. We see that
δαshuff << δα, δhshuff << δh ' 0.3.

This is because random shuffling destroys the long-range correlations that are present in the
original time series.
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MF-DFA results II

z δhshuff δhu δhv δhw δhT

23.3m 0.01 0.28 0.30 0.32 0.38
33m 0.01 0.24 0.24 0.27 0.45

Table: δh = h(qmin)− h(qmax), for different velocity components u, v, and w and the temperature T. For
all these variables, the shuffled time series yields δhshuff ' 0.01. Note that hu < hv < hw < hT .

Note that f (α) is not symmetrical aboutα0 ≡ maxα[f (α)]. This is related to the levelling of
Hurst surfaces in Fig. 1 (a,c), for positive q.

The multifractality of velocity and temperature time series is related to long-range correlations.
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MMA results I
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Figure 2: Representative
Hurst-surface plots h(q, s)
for the velocity components
u, v,w (a-c) and
temperature (d).
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MMA results II

The anisotropy of the flow is evident from the cross-sections of the Hurst surfaces.

(a) (b) (c) (d)

Figure 3:Cross sections of constant scale q = 1.3 (a,b) and s = 391 (c,d) of averaged Hurst surfaces (with
one standard deviation error bars) corresponding to different velocity components (hu(q, s) (red),
hv(q, s) (green) hw(q, s) (blue)) at different heights zbot(a,c) and ztop (b,d) for stable stratification.
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Conclusions

I We have used the MF-DFA and MMA to quantify the multifractal corrections to simple K41
scaling of structure functions in turbulent flows in the canopy sublayer over the Hyytiälä
forest.

I Our multifractal analysis shows quantitatively that the anisotropy in the correlation of
fluctuations in the roughness sublayer is more pronounced close to the canopy than
higher up, away from the top of the canopy.

I Our plots of h(q), f (α), and h(q, s) uncover clearly the anisotropy of the multiscaling of
velocity and temperature structure functions.
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Thank you for your attention.
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