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In short

We identified HPEs in the eastern Mediterranean
using a weather radar archive

These HPEs were simulated in a convection-
permitting WRF model

Some main characteristics of rainfall patterns during
these HPEs are:

For short durations rain amounts are higher near
the sea and far into the desert, but for long
durations they are highest in the mountains

HPEs consist of small-scale short-lived
convective rain cells
WRF model simulations show:

Good representation of rainfall structure and
location, except for the highest rain amounts

Convection-permitting models can simulate most
HPEs, apart from the most localized and short events

Image source: unknown
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The castern Mediterranean
is heavily influenced by
heavy precipitation events
(HPES) obg@
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Lake Kinneret level change and rainfall

10-2012 12-2012 02-2013 04-2013
0

. =
c =
= 5
e 1]
£ 60 5
& 2
= Q
© >
- T

a

5N
© O

0
o




Lake Kinneret level change and rainfall

10-2012 12-2012 02-2013 04-2013
0

. =
c =
= 5
e 1]
£ 60 5
& 2
= Q
© >
- T

a

5N
© O

0
o




‘

Most HPEs are attributed to two types of synoptic
systems associated with diffferent raintall patterns:

Mediterranean
cyclones (MCs)

Active Red Sea
troughs (ARSTS)
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What rainfall patterns characterize
heavy precipitation events? '




~
What rainfall patterns characterize

heavy precipitation events?

{ Identify heavy precipitation events using a weather radar

e Long record (24 years; Marra and Morin, 2015)
e High spatiotemporal resolution (5 min, 1km?)

- ( Compare high resolution model runs with observations

e High resolution, convection permitting WRF

‘ Characterize rainfall patterns

e Spatial distribution of rain amounts
e Structure of rain field
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from the radar archive
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from the radar archive

Rain depth threshold for each
radar pixel (1 km?, ~10° pixels, 1-
72h duration, during 1990-2014)

Events were defined where
>1000 pixels crossed the

2007.01-08 20070227

Automatic and manual removal
of clutter and poor-quality events
vielded 41 events

Northing [m]

«10° 72 hrs

dentification of heavy precipitation events

\l

(@)

Easting [m]

3 4
><1O5

1.5

Rainfall quantile value [mm/hr]

e 2- return
period from
gauges



dentification of heavy precipitation events
from the radar archive

Rainfall quantile value [mm/hr]
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WRF simulation of the 41 identified events

* |nput: Era-Interim 6h, ~80 km, 60 horizontal

levels

* Three (2-way) nested domains, 1:5 ratio

® |[nner domain — convection-permitting,
comparable to radar domain

Outer nest | Middle nest Inner
nest
Spatial resolution [km] 25x25 5x5 1x1
Temporal resolution [s] ~100 ~20 4-8
Domain size [pixels] 100x100 221x221 | 551x551
Number of vertical layers 68 68 68
Model top [hPa] 25 25 25
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I Climatology of HPEs

% 10° Radar

- Rainy days
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* HPEs occur throughout the rainy season, but concentrate
mainly in early winter

* Their center of mass is located next to the Mediterranean
coast and moves inland along the season
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Northing [m]

Case study: HPE #1

General pattern looks OK

Let’s examine this pattern closely
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Case study: HPE

Pixel-by-pixel:
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Analyses for all HPEs: minimal scale

250 XXX X X

* The minimal scale for a |
skillful forecast
depends on the rainfall
threshold examined.
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200 - Inter-event median

Inter-event 20%-80%

=
* It is very low for low £ XX
rainfall thresholds and g
increases sharply
above 45 mm

50|

X
X
X
0;% X X X X X X
1 2
10 10 10

Rainfall threshold [mm]




Analyses for all HPEs: SAL

e Structure-Amplitude-Location
(SAL) analysis (Wernli et al.,
2008) describe model results
separately for each of the three
components

e Rainfall structure and location
are well modelled

* There’s a large amplitude bias

*Link to a description of SAL analysis
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Analyses for all HPEs: DAD curves

* Areal rainfall amounts are
crucial drivers of the
hydrological response and are
important for understanding
rainfall structure and triggering
mechanisms

* They could be represented by
depth-amplitude-duration (DAD)
curves

* DAD curves are similar between
WRF and Radar, but WRF
underestimates rainfall during
ARSTs

e Radar curves exhibit higher
amounts over smaller regions
than WRF curves

(C) Max 6 h radar accumulation (d) Max 6 h WRF accumulation
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Analyses for all HPEs:
Autocorrelation
structure

* Rain cells autocorrelation
structure emphasizes the degree
of rainfall “convectiveness” and

the size of rain cells

e Rainfall in HPEs is highly localized,
as manifested by both radar and
WRF results

e Rain cells during MCs are larger
than during ARSTs

*Link to a description of autocorrelation
analysis
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Conclusions

We identified HPEs in the eastern Mediterranean using a
weather radar archive

These HPEs were simulated in a convection-permitting WRF
model

Some main characteristics of rainfall patterns during these
HPEs are:

For short durations rain amounts are higher near the
sea and far into the desert, but for long durations they
are highest in the mountains

HPEs consist of small-scale short-lived convective rain
cells

Rain cells during ARSTs are smaller than during MCs

WRF model simulations show:

Good representation of rainfall structure and
location, except for the highest rain amounts, but
consist of a high positive bias

Model simulations of MCs are betterthan simulations
of ARSTs

Convection-permitting models can simulate most HPEs,
apart from the most localized and short events



Check out our paper in HESS
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Rainfall patterns: Structure (autocorrelation)
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Rainfall patterns: Structure (autocorrelation)

Similar
properties for
both radar and
WRF
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