

Radar-based characterization of heavy precipitation in the eastern Mediterranean and its representation in a convection-permitting model

Efrat Morin, Moshe Armon, Francesco Marra, Yehouda Enzel, and Dorita Rostkier-Edelstein

We identified **HPEs** in the eastern Mediterranean using a **weather radar archive**

These HPEs were simulated in a **convectionpermitting WRF** model

Some main characteristics of rainfall patterns during these HPEs are:

For short durations rain amounts are higher near the sea and far into the desert, but for long durations they are highest in the mountains

HPEs consist of small-scale short-lived convective rain cells

WRF model simulations show:

Good representation of rainfall structure and location, except for the highest rain amounts

Convection-permitting models can simulate most HPEs, apart from the most localized and short events

Contents

- Introduction
 - Heavy precipitation events (HPEs) in the eastern Mediterranean
 - Rainfall patterns during HPEs
- Methodology and results
 - <u>HPEs identification from a weather radar archive</u>
 - Climatology
 - Convection-permitting WRF model representation of HPEs
 - Bias
 - Case study #1
 - Analyses for all examined HPEs
- Conclusions
- Appendix
- References

But also contribute to Water resources

But also contribute to Water resources

Most HPEs are attributed to two types of synoptic systems associated with different rainfall patterns:

Mediterranean cyclones (MCs)

35°N-30°N-25°N-25°N-

Active Red Sea troughs (ARSTs)

Modified from Armon et al., 2019

What rainfall patterns characterize heavy precipitation events?

What rainfall patterns characterize heavy precipitation events?

Identify heavy precipitation events using a weather radar

- Long record (24 years; Marra and Morin, 2015)
- High spatiotemporal resolution (5 min, 1km²)

Compare high resolution model runs with observations

High resolution, convection permitting WRF

Characterize rainfall patterns

- Spatial distribution of rain amounts
- Structure of rain field

Identification of heavy precipitation events from the radar archive

Events were defined where >1000 pixels crossed the threshold

Automatic and manual removal of clutter and poor-quality events yielded **41 events**

Identification of heavy precipitation events from the radar archive

Events were defined where >1000 pixels crossed the threshold

Automatic and manual removal of clutter and poor-quality events yielded **41 events**

Identification of heavy precipitation events from the radar archive

Events were defined where >1000 pixels crossed the threshold

Automatic and manual removal of clutter and poor-quality events yielded **41 events**

WRF simulation of the 41 identified events

- Input: Era-Interim 6h, ~80 km, 60 horizontal levels
- Three (2-way) nested domains, 1:5 ratio
- Inner domain convection-permitting, comparable to radar domain

	Outer nest	Middle nest	Inner nest
Spatial resolution [km]	25x25	5x5	1x1
Temporal resolution [s]	~100	~20	4-8
Domain size [pixels]	100×100	221x221	551x551
Number of vertical layers	68	68	68
Model top [hPa]	25	25	25

Climatic classification: Atlas of Israel (2011). ESRI basemap source: U.S. National Park Service

Climatology of HPEs

- HPEs occur throughout the rainy season, but concentrate mainly in early winter
- Their center of mass is located next to the Mediterranean coast and moves inland along the season

WRF vs. radar bias

- Radar data exhibit some range degradation and obscured rays
- A **bias threshold** was set (-66% +200%)

Case study: HPE #1

General pattern looks OK Let's examine this pattern closely

Bias = 120%; CC = 0.76; RMSE = 20 mm

Case study: HPE #1

Pixel-by-pixel: Huge spread (although the 1:1 line is apparent)

Bias = 120%; CC = 0.76; RMSE = 20 mm

Case study: HPE #1

Bias = 120%; CC = 0.76; RMSE = 20 mm

The neighborhood statistic, Fraction Skill Score (Roberts and Lean, 2008) seems good for rainfall thresholds <100 mm

The minimal scale for a skillful representation of the rainfall equals to the model resolution (1km²)

Analyses for all HPEs: minimal scale

- The minimal scale for a skillful forecast depends on the rainfall threshold examined.
- It is very low for low rainfall thresholds and increases sharply above 45 mm

Analyses for all HPEs: SAL

- Structure-Amplitude-Location (SAL) analysis (Wernli et al., 2008) describe model results separately for each of the three components
- Rainfall structure and location are well modelled
- There's a large amplitude bias

^{*}Link to a description of SAL analysis

Analyses for all HPEs: DAD curves

- Areal rainfall amounts are crucial drivers of the hydrological response and are important for understanding rainfall structure and triggering mechanisms
- They could be represented by depth-amplitude-duration (DAD) curves
- DAD curves are similar between WRF and Radar, but WRF underestimates rainfall during ARSTs
- Radar curves exhibit higher amounts over smaller regions than WRF curves

Analyses for all HPEs: Autocorrelation structure

- Rain cells autocorrelation structure emphasizes the degree of rainfall "convectiveness" and the size of rain cells
- Rainfall in HPEs is highly localized, as manifested by both radar and WRF results
- Rain cells during MCs are larger than during ARSTs

^{*}Link to a description of autocorrelation analysis

Conclusions

We identified **HPEs** in the eastern Mediterranean using a **weather radar archive**

These HPEs were simulated in a **convection-permitting WRF** model

Some main **characteristics of rainfall patterns** during these HPEs are:

For short durations rain amounts are higher near the sea and far into the desert, but for long durations they are highest in the mountains

HPEs consist of small-scale short-lived convective rain cells

Rain cells during ARSTs are smaller than during MCs

WRF model simulations show:

Good representation of rainfall structure and location, except for the highest rain amounts, but consist of a high positive bias

Model simulations of MCs are better than simulations of ARSTs

Convection-permitting models can simulate most HPEs, apart from the most localized and short events

SAL analysis

Wernli et al., 2008

Amplitude:

- 0 is the best
- 1 means over estimation X3

• Structure:

- 0 is the best
- S>0 too widespread
- S<0 too small or too peaked

Location

 0 is the best (both center of mass and the average distance between precipitation-objects are the same)

Rainfall patterns: **Structure** (autocorrelation)

Rainfall patterns: Structure (autocorrelation)

Similar properties for both radar and WRF

Decorrelation
distance ~8km
Temporal
decorrelation
distance ~5-10min

Convective cells of all events

References

- Armon, M., Morin, E., & Enzel, Y. (2019). Overview of modern atmospheric patterns controlling rainfall and floods into the Dead Sea: Implications for the lake's sedimentology and paleohydrology. *Quaternary Science Reviews*, 216, 58–73. https://doi.org/10.1016/j.quascirev.2019.06.005
- Armon, M., Marra, F., Enzel, Y., Rostkier-Edelstein, D., & Morin, E. (2020). Radar-based characterisation of heavy precipitation in the eastern Mediterranean and its representation in a convection-permitting model. *Hydrology and Earth System Sciences*, 24(3), 1227–1249. https://doi.org/10.5194/hess-24-1227-2020
- Marra, F., & Morin, E. (2018). Autocorrelation structure of convective rainfall in semiarid-arid climate derived from high-resolution X-Band radar estimates. *Atmospheric Research*, 200(September 2017), 126–138. https://doi.org/10.1016/j.atmosres.2017.09.020
- Roberts, N. M., & Lean, H. W. (2008). Scale-Selective Verification of Rainfall Accumulations from High-Resolution Forecasts of Convective Events. Monthly Weather Review, 136(1), 78–97. https://doi.org/10.1175/2007MWR2123.1
- Wernli, H., Paulat, M., Hagen, M., & Frei, C. (2008). SAL—A Novel Quality Measure for the Verification of Quantitative Precipitation Forecasts. *Monthly Weather Review*, 136(11), 4470–4487. https://doi.org/10.1175/2008MWR2415.1