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In short
We identified HPEs in the eastern Mediterranean 
using a weather radar archive

These HPEs were simulated in a convection-
permitting WRF model

Some main characteristics of rainfall patterns during 
these HPEs are:

For short durations rain amounts are higher near 
the sea and far into the desert, but for long 
durations they are highest in the mountains

HPEs consist of small-scale short-lived 
convective rain cells

WRF model simulations show:

Good representation of rainfall structure and 
location, except for the highest rain amounts

Convection-permitting models can simulate most 
HPEs, apart from the most localized and short events

Image source: unknown



Contents

• Introduction
• Heavy precipitation events (HPEs) in the 

eastern Mediterranean
• Rainfall patterns during HPEs

• Methodology and results

• HPEs identification from a weather radar 
archive
• Climatology

• Convection-permitting WRF model 
representation of HPEs
• Bias
• Case study #1
• Analyses for all examined HPEs

• Conclusions

• Appendix

• References



Google earth



Google earth



Google earth

Paran Stream – Reuters: 
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Google earth
Modified from Armon et al., 2019



What rainfall patterns characterize 
heavy precipitation events?



What rainfall patterns characterize 
heavy precipitation events?

• Long record (24 years; Marra and Morin, 2015)

• High spatiotemporal resolution (5 min, 1km2)

Identify heavy precipitation events using a weather radar

• High resolution, convection permitting WRF

Compare high resolution model runs with observations

• Spatial distribution of rain amounts

• Structure of rain field

Characterize rainfall patterns



Identification of heavy precipitation events 
from the radar archive

Rain depth threshold for each 
radar pixel (1 km2, ~105 pixels, 1-
72h duration, during 1990-2014)

Events were defined where 
>1000 pixels crossed the 

threshold

Automatic and manual removal 
of clutter and poor-quality events 

yielded 41 events
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WRF simulation of the 41 identified events
▪ Input: Era-Interim 6h, ~80 km, 60 horizontal 

levels

▪ Three (2-way) nested domains, 1:5 ratio

▪ Inner domain – convection-permitting, 
comparable to radar domain

Outer nest Middle nest
Inner 
nest

Spatial resolution [km] 25X25 5X5 1X1

Temporal resolution [s] ~100 ~20 4-8

Domain size [pixels] 100X100 221X221 551X551

Number of vertical layers 68 68 68

Model top [hPa] 25 25 25 Climatic classification: Atlas of Israel (2011). ESRI basemap source: U.S. National Park Service



Climatology of HPEs
• HPEs occur throughout the rainy season, but concentrate 
mainly in early winter

• Their center of mass is located next to the Mediterranean 
coast and moves inland along the season



WRF vs. radar 
bias

• Radar data exhibit some 
range degradation and 
obscured rays

• A bias threshold was set 
(-66% - +200%)



Case study: HPE #1

General pattern looks OK
Let’s examine this pattern closely

Bias = 120%; CC = 0.76; RMSE = 20 mm



Case study: HPE #1

Pixel-by-pixel:
Huge spread (although the 1:1 line is 
apparent)

Bias = 120%; CC = 0.76; RMSE = 20 mm



Case study: HPE #1

The neighborhood statistic, Fraction Skill 
Score (Roberts and Lean, 2008) seems good 
for rainfall thresholds <100 mm

The minimal scale for a skillful 
representation of the rainfall equals to the 
model resolution (1km2)

Bias = 120%; CC = 0.76; RMSE = 20 mm



Analyses for all HPEs: minimal scale

• The minimal scale for a 
skillful forecast 
depends on the rainfall 
threshold examined.

• It is very low for low 
rainfall thresholds and 
increases sharply 
above 45 mm



Analyses for all HPEs: SAL

• Structure-Amplitude-Location 
(SAL) analysis (Wernli et al., 
2008) describe model results 
separately for each of the three 
components

• Rainfall structure and location 
are well modelled

• There’s a large amplitude bias

*Link to a description of SAL analysis



Analyses for all HPEs: DAD curves

• Areal rainfall amounts are 
crucial drivers of the 
hydrological response and are 
important for understanding 
rainfall structure and triggering 
mechanisms

• They could be represented by 
depth-amplitude-duration (DAD) 
curves

• DAD curves are similar between 
WRF and Radar, but WRF 
underestimates rainfall during 
ARSTs

• Radar curves exhibit higher 
amounts over smaller regions 
than WRF curves



Analyses for all HPEs: 
Autocorrelation 
structure

• Rain cells autocorrelation 
structure emphasizes the degree 
of rainfall “convectiveness” and 
the size of rain cells

• Rainfall in HPEs is highly localized, 
as manifested by both radar and 
WRF results

• Rain cells during MCs are larger 
than during ARSTs

*Link to a description of autocorrelation 
analysis



Conclusions
We identified HPEs in the eastern Mediterranean using a 
weather radar archive

These HPEs were simulated in a convection-permitting WRF 
model

Some main characteristics of rainfall patterns during these 
HPEs are:

For short durations rain amounts are higher near the 
sea and far into the desert, but for long durations they 
are highest in the mountains

HPEs consist of small-scale short-lived convective rain 
cells

Rain cells during ARSTs are smaller than during MCs

WRF model simulations show:

Good representation of rainfall structure and 
location, except for the highest rain amounts, but 
consist of a high positive bias

Model simulations of MCs are better than simulations 
of ARSTs

Convection-permitting models can simulate most HPEs, 
apart from the most localized and short events



Questions? 

Check out our paper in HESS

or 

contact directly by email: 
moshe.armon@mail.huji.ac.il

https://www.hydrol-earth-syst-sci.net/24/1227/2020/hess-24-1227-2020.html
mailto:moshe.armon@mail.huji.ac.il


SAL analysis
Wernli et al., 2008

• Amplitude:
• 0 is the best
• 1 means over estimation X3

• Structure:
• 0 is the best
• S>0 too widespread
• S<0 too small or too peaked

• Location
• 0 is the best (both center of 

mass and the average 
distance between 
precipitation-objects are the 
same)
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*Back to SAL analysis



Rainfall patterns: Structure (autocorrelation)
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For each (10 min) 
time step

Convective?
Find 2D spatial 
autocorrelation

Fit 1D exponential 
function

Based on 
Marra and Morin, 2018

*

*Link back to autocorrelation structure



Rainfall patterns: Structure (autocorrelation)

Median

10% / 90%

25% / 75%

Similar 
properties for 
both radar and 
WRF

Decorrelation 
distance ~8km 

Temporal 
decorrelation 
distance ~5-10min

Convective cells of all events

n=11731 n=14323
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