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Pressures/Drivers in the
Water Sector
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Smart/Digital Water City




Smart Water and Wastewater
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Digital Water Technology
Example #1:

Real-time Detection and
Location of Failure Events
iIn Water Distributon Systems



Real-time Detection and
Location of Pipe Bursts/Leaks

« Challenge: use pressure and
flow sensor data to detect and
locate bursts and other events
and raise alarms in real-time

« Data analytics type technology —
no hydraulic or any other model

* Enables more proactive O%
approach




(Big) Data Available

e Sensor data:

— Pressures and flows at DMA sources
and import/export points

— Pressures at critical/other points
— Logging every 15 minutes
— Other (e.g. SCADA data)

— Lots of sensors in large UK
companies

e Other data:

— Network/asset data

— Customer bills and contacts

— WMS/mains repair data

— Other (e.g. smart demand metering)

* Current situation: DRIP




Event Detection System

uPast signal and other data

Module 1: Captures pressure/flow signals and predicts values for the next time step(s)
assuming no events in the system
Technology: ANN and Wavelets

J\,LSignaI forecasts and latest observations

Module 2: Collects evidence of possible event occurrence
Technology: Statistical analysis (SPC)

JVL Evidence about potential event

Module 3: Estimates probability of a sensor (or group of sensors) detecting an event
Technology: Bayesian Networks

u Alarm

Module 4: Calibration module (initial and periodic calibration)




Example: Large Burst
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Example: Small Burst
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Example: PRV Failure
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Event Detection Technology

» Successfully tested and validated on historical
data, engineered events and real-life events

 Enables fast and reliable detection of different
type events at the sensor/DMA level

 ERS used companywide in a large UK water utility
since 2015 resulting in major operational cost
savings
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Digital Water Technology
Example #2:

Machine Learning based
Automated Asset Condition
Assessment



Motivation

CCTV used to survey most sewer /urban drainage pipes
- Commonly collected using ‘PIG’ or ‘push rods’
- Footage is time consuming to collect
- Requires trained engineers
- Prone to human error and subjectivity

AIM:  Automatically detect and identify faults in CCTV
sewer surveys

*.J' POOLE ROSEMARY ROAD
I $203938401 -> S203939401
B Vitrified clay Circular 225

LC1:  055.30 m

Intruding Roots Collapsed Pipe




Fault Detection Methodology

Frame Extraction Pre-processing Feature Extraction
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Results

Applied to unseen CCTV sewer

surveys achieved the detection
accuracy of 90% with low false

alarm rate

Validated so far on CCTV data from
UK, Finland and Australia

Ultimate goal is to incorporate this
technology into a decision support

17.07. 2013

type tool used by a technician
Currently being commercialised



Other Examples of
Digital Water Technologies

Early warning for discolouration issues
Detection of events at treatment works
Sensor data validation

Real-time system state estimation via data
assimilation (online modelling)

Adaptive demand forecasting
Pump scheduling for energy cost and

water quality

Flood forecasting

Many objectives optimisation of water

systems
Other
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Take Home Messages

 Digital water solutions work and can lead to
substantial cost savings, benefits and improved

service

 Digital water solutions have great potential to
address a wide range of real challenges in the
water sector

* Al and machine learning is not sufficient of its own,
it needs to be combined with engineering
knowledge and adopted by people who can use it







