
We analyzed the sediments of Garba Guracha (15.5 m core)

• XRF analysis was performed at Aberystwyth University

using the ITRAX™ core scanner.

• Total carbon (TC), total nitrogen (N) and stable carbon and

nitrogen isotopic composition (δ13C and δ15N, respectively)

were determined for 110 mixed sediment samples covering

roughly 10 cm intervals.

• TC is equal TOC

• 88 samples were analyzed for δ18Osugar and δ2Hn-alkane

• 20 samples were analyzed for δ18Odiatom

➢ Dating of compound class n-alkanes is a valuable tool for lake

sediment dating in small catchment areas

➢ The minimum age of deglaciation is ~16000 cal. yrs BP)

➢ δ18Ofucose can be used as proxy for δ18Olake water

− δ18Odiatom as aquatic signal supports this finding.

− Most negative δ18O values agree with other records from

the region (Fig. 3) pointing to increased precipitation

or/and a different moisture source.

− Moreover, the range of δ18Ofucose can not be explained by

source and amount effect alone. Evaporative enrichment

must be considered interpreting the δ18Osugar record.

➢ Most negative δ18O values between 10 and 7 ka concurring

with the AHP indicating a high P/E ratio and an overflowing

lake.

➢ Northern hemisphere events (8.2, 6.5, and 4.2 ka) are visible in

the Garba Guracha record

Phase 1 (Fig. 2): High sedimentation rates, high minerogenic input

and low TOC values point to fast filling lake bed with a low

vegetated catchment. Low TOC/N values and relatively positive

δ13C values point to aquatic algae as dominant organic matter

source.

Phase 2: The time period of the northern hemisphere Younger

Dryas (YD) is marked by a decrease in sedimentation rate by 80%

indicating a dry or/and cold phase.

Phase 3: With increasing insolation TOC and TOC/N reach the

highest values between the Holocene onset and 4.3 ka (ca.

African humid period - AHP) pointing to a phase of favorable

growth conditions. Most negative δ18O values support high rainfall

amounts (amount effect), a different moisture source (source

effect) or/and a high P/E value and an overflowing lake. North-

hemisphere cold spells (8.2 and 6.5 ka event) are visible in

different proxies.

Phase 4: A rapid change in TOC, TOC/N concur with the 4.2 ka

event known as a shift to dryer conditions.
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Revisiting Lake Garba Guracha, high altitude lake in the Bale Mountains, Ethiopia: 

reconstructing Late Glacial – Holocene lake level history using δ2H/δ18O biomarker 

analyses

Introduction

The climate of East Africa is driven by the position of the

Intertropical Convergence Zone (ITCZ). The intensity and

position of the ITCZ related tropical rain belt changes

depending on the interhemispheric temperature gradient

(Broccoli et al., 2006). During the early Holocene boreal

summer insolation maximum, the mean position of the tropical

rain belt shifted north leading to increased precipitation across

northern Africa (Gasse, 2000). Additionally, an increased land-

ocean temperature gradient caused a strengthening of the

West African Monsoon (WAM) and Indian Summer Monsoon

(ISM) generating a water level rise in African lakes (Junginger

et al., 2014; Lezine et al., 2014). This shift to a more pluvial

early-mid Holocene (12-5 ka), termed African Humid Period

(AHP) (DeMenocal et al., 2000), was particularly intense in

North Africa and extended south until 10°S in East Africa

(Gasse, 2000). While the general mechanisms for the orbitally-

forced AHP are well understood the spatial and temporal

patterns are highly debated.

As part of the Research Unit FOR 2358 ‘The Mountain Exile

Hypothesis’, we address the question of ‘How humans

benefited from and re-shaped African high-altitude ecosystems

during Quaternary climate changes´. Therefore, we

investigated the high-altitude, small catchment, cirque lake

Garba Guracha at 3950 m asl. - an ideal sedimentary archive

for reconstructing afro-alpine paleoclimate/-environment.

We show geochemical, biomarker and diatom isotope

(δ18Ofucose and δ18Odiatom) results for the Late Glacial and

Holocene.

Specifically, we aim to:

1. develop a robust chronology,

2. reconstruct the sedimentary history and

3. the climate and lake level history since the Last Glacial.

Chronology

Methods

Conclusions
For radiocarbon dating, we took a total of 27 samples. Apart

from 14 bulk sediment ages, we obtained 14C ages from 8 bulk

n-alkane and 5 charcoal samples from the organic-rich top 9

meters of the core.

All 14C ages are in stratigraphic order. The bulk n-alkanes and

the bulk sediments samples obtained from the same core

centimeters yielded similar ages without any systematic age

offset. Additionally, there is no age offset for the two charcoal
14C ages. The surface core (top 70 cm) were 210Pb dated.

Tephra layers were analyzed and correlated.
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Discussion

Environmental implications

Fig. 1: Age-depth model for the Garba Guracha sedimentary record. The model was created

using Bacon (Blaauw and Christen 2011). The main panel displays the depth (x-axis) and age

(y-axis) scale. The probability distribution of the calibrated ages is represented as violin plots

(modeled ages (blue), non-modeled ages (pink) and tephra ages (68 % probability) of Lake Tilo

tephra TT1 and Lake Chamo tephra CHT2 (red). In the lower-left corner, the sedimentation rate

with a mean sedimentation rate (dotted red line) is displayed.

Fig. 3: Comparison of lake level reconstructions in Eastern Africa and

δ18O records for the past 12,000 years (Dongge caves - Dykoski et al.,

2005; Qunf cave - Fleitmann et al., 2003; Garba Guracha; Lake Abhè -

Gasse, 2000; Ziway–Shala - Gillespie et al., 1983; Chew Bahir - Foerster

et al., 2012; Turkana - Garcin et al., 2012 (filled curve), Johnson et al.,

1991 (dotted curve), Brown and Fuller, 2008 (dashed curve); Paleolake

Suguta - Junginger et al., 2014; and insolation variations (Laskar et al.,

2004).

Fig. 2: Summer insolation (Laskar et al. 2011), TOC, TOC/N, Botryococcus 

braunii (Umer et al. 2007), δ13C, (fuc+xyl)/ara, fuc/(ara+xyl), Paq, titan element 

and calculated sedimentation rate.

Fig. 4: Ternary diagram illustrating the relative contributions of ara, fuc and xyl in the GG 

sedimentary record. For comparision, plant, organic layer and topsoil samples from the GG 

catchment are included (Mekonnen et al., 2019).
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