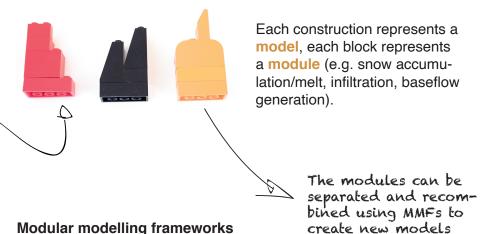
N. Addor (U. Exeter, UK), M. Clark (U. Saskatchewan, Canada), B. Henn (Scripps Institution of Oceanography, USA) - n.addor@exeter.ac.uk

EGU2020 session EOS7.10. Open Hydrology: Advances towards fully reproducible, re-usable and collaborative research methods in Hydrology

Context

Hydrological models (HMs) are essential tools to explore terrestrial water dynamics and to anticipate future hydrological events. Since their inception, HMs have been **developed in parallel by different institutions**. There is now a plethora of HMs, yet a relative absence of cross-model developments (code is almost never portable between models) and of guidance on model selection.

Furthermore, traditional HMs, developed over the last decades, **typically rely on a single model structure** (most processes are simulated by a single set of equations). This lack of modularity makes it difficult to i) understand differences between models, ii) run a large ensemble of models, iii) capture the spatial variability of hydrological processes and iv) develop and improve hydrological models in a **coordinated fashion across the community**.

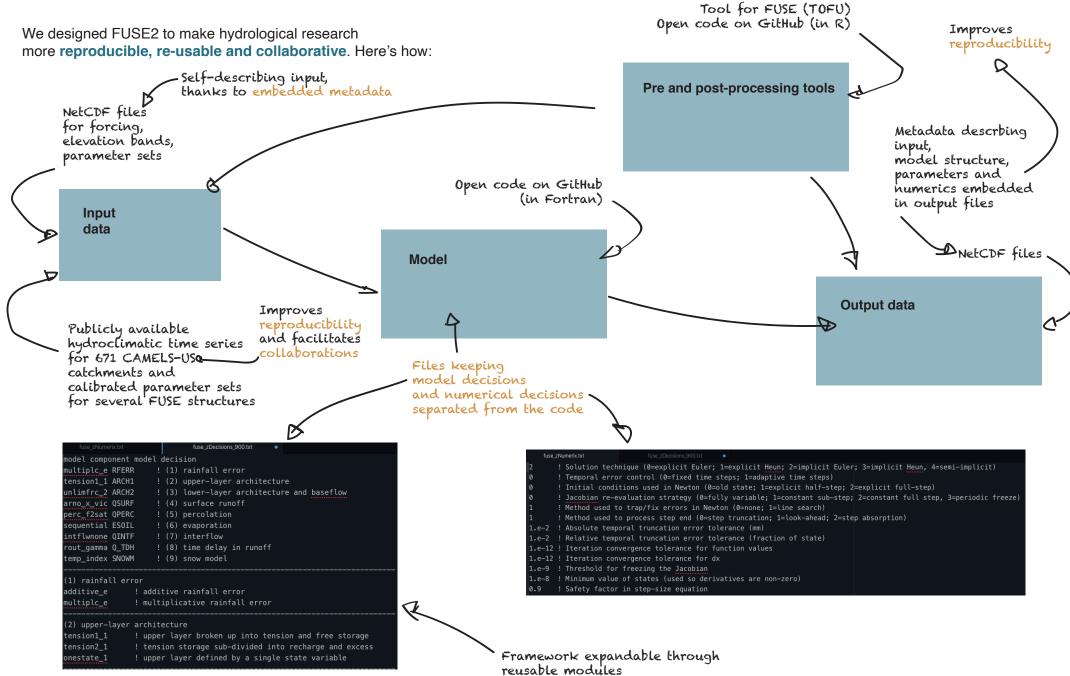

Approach

We argue that these limitations can be overcome by modular modelling frameworks (MMFs), which are **master templates for model generation**. MMFs offer several options for each important modelling decision. They also allow users to **add functionalities when they are required**, by loading libraries developed and maintained by the community - this makes **multimodel frameworks good candidates to become community models** (slide 4).

Many MMFs exist (RAVEN, SUPERFLEX, MARRMoT, FUSE, SUMMA). Here we present recent FUSE developments designed to overcome the HMs limitations outlined above (slides 2), to foster **more reproducible, re-usable and collaborative research in hydrology** and enable more systematic model development and use (slide 3).

Differences between fixed-structure models and MMFs explained with Lego

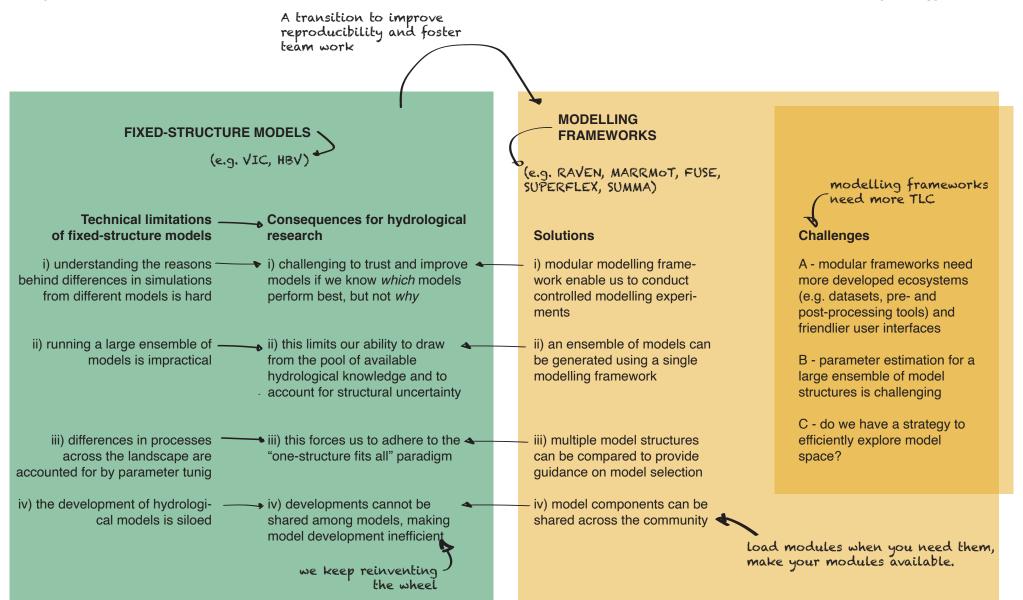
Fixed-structure models



Fixed-structure models have a single option for most of their model decisions. In contrast, the Framework for Understanding Structural Errors (FUSE) is a **multiple-choice model**. FUSE was first released by Clark et al. (2008), FUSE2 (in prep.) improves its usability and efficiency over continenal domains. These modules can be combined in many ways to i) conduct controlled experiments and ii) create and run an ensemble of models.

Hydrological processes (as seen by FUSE2)	Model decisions	FUSE options (modules)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1) snow	<ul><li>A) temperature index snow model</li><li>B) no snow model</li></ul>
	2) rainfall error	A) additive rainfall error B) multiplicative rainfall error
CT37E	3) evaporation	A) sequential evaporation model B) root weighting
A SD	4) surface runoff	<ul><li>A) ARNO/Xzang/VIC parameterisation (upper zone control)</li><li>B) PRMS variant (fraction of upper tension storage)</li><li>C) TOPMODEL parameterisation</li></ul>
	5) upper-layer architecture	<ul><li>A) upper layer broken up into tension and free storage</li><li>B) tension storage sub-divided into recharge and excess</li><li>C) upper layer defined by a single state variable</li></ul>
	6) interflow	A) interflow B) no interflow
P	7) percolation	<ul><li>A) water from (field cap to sat) avail for percolation</li><li>B) water from (wilt pt to sat) avail for percolation</li><li>C) perc defined by moisture content in lower layer</li></ul>
	8) lower-layer architecture and baseflow	<ul> <li>A) tension reservoir plus two parallel tanks</li> <li>B) baseflow reservoir of unlimited size, frac rate</li> <li>C) baseflow reservoir of unlimited size, power recession</li> <li>D) baseflow reservoir of fixed size</li> </ul>
	9) time delay in runoff	A) routing use a Gamma distribution B) no routing

Clark et al., Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models, Water Resour. Res., 44(12), doi:10.1029/2007WR006735, 2008.






reusable modules contributed by the community

3/4

We see modular modelling frameworks and multi-model frameworks emerging as community models. They are essential to overcome challenges met by traditional fixed-structure models (see below) and enable more reproducible, re-usable and collaborative research in hydrology.



Addor and Melsen: Legacy, rather than adequacy, drives the selection of hydrological models, Water Resour. Res., 55(1), 378–390, doi:10.1029/2018WR022958, 2019.