In-field variations of soil

properties and wheel loads

result in a spatially highly

variable soil compaction risk

Evaluating of agricultural field traffic by modelling traffic intensity

and related soil compaction risk

Michael Kuhwald, Katja Augustin and Rainer Duttmann

OBJECTIVES

Soil compaction risk is spatio-temporal dynamic, not only on regional but also on field scale. However, no analyses exist focusing on in-field variation of soil compaction risk. Thus, this study aims to model and analyze the variability of soil compaction risk within fields for different crops.

RESULTS & DISCUSSION

This is the first approach enabling soil compaction risk analyses for an entire field with such a high spatial resolution (10 cm). The analyses show that soil compaction risk is highly variable on a certain field depending on soil properties and dynamic changes in wheel load.

(20 Topsoil

cm)

Subsoil (40 cm)

METHODS

- A field in northern Germany (silt loam), three years (2016, 2017, 2018), three crops (maize, winter wheat, sugar beet)
- Soil moisture measurements at 30 sites (20, 40 cm depth)
- Further soil measurements at 60 sites (e.g. texture, Corg)
- Application of the "FiTraM"-model (Augustin et al. 2019) for calculating exact traffic lanes and wheel loads
- Application of the "SaSCiA"-model (Kuhwald et al. 2018) for modelling soil compaction risk for different depths

