

Spatio-temporal cluster analyses of landslides in Italy at national and regional scale

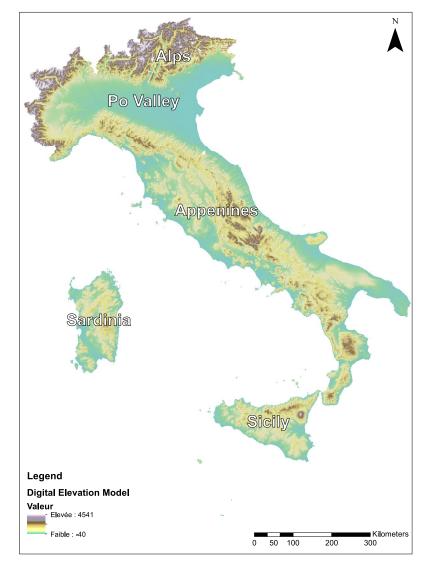
Marj Tonini^a, Gaetano Pecoraro^b, Kim Romailler^a, Michele Calvello^b

(marj.tonini@unil.ch, gpecoraro@unisa.it)

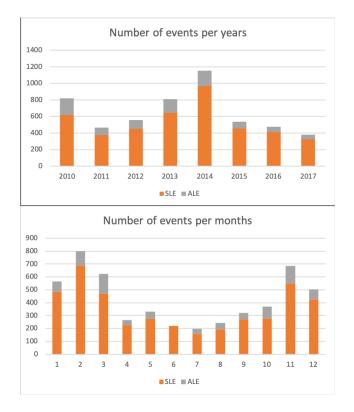
^a Institute of Earth Surface Dynamics, Faculty of Geosciences and Environment, University of Lausanne, Switzerland

NIL | Université de Lausanne

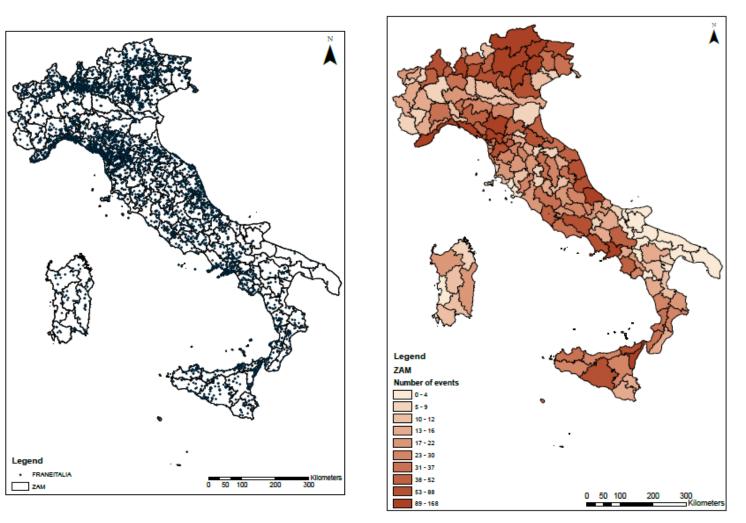
Faculté des géosciences et de l'environnement ^b Department of Civil Engineering, University of Salerno, Italy



Main objective

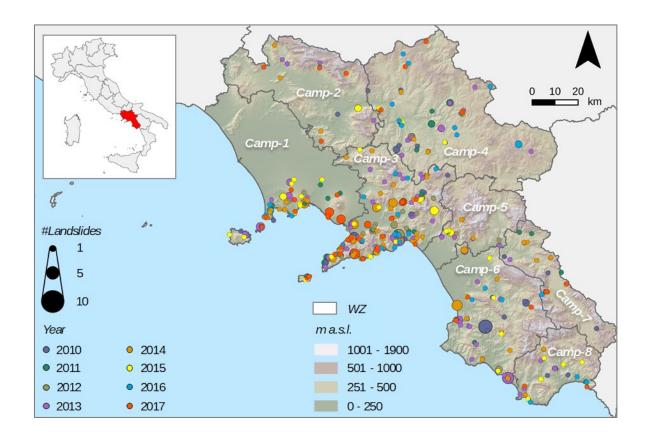

- Detection and mapping of spatio-temporal **clusters of landslides** for warning purposes.
- Analyses are performed both at national scale, considering the Italian peninsula and the surrounding islands, and at regional scale, focusing on the Campania region.
- At national scale, a subdivision of the territory into 158 **warning zones** (WZ), as identified by the civil protection regional centers to deal with weather-induced hydrogeological hazards, was adopted.
- The landslides inventory supporting the results is available on an open data repository, FraneItalia, a geo-referenced catalog developed consulting online news sources and reporting landslide events in Italy from 2010 to 2017

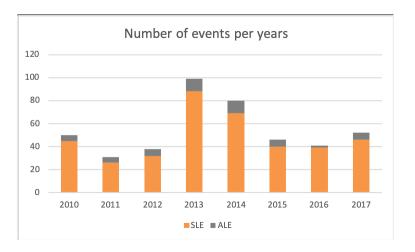
(https://data.mendeley.com/datasets/zygb8jygrw/1)



Dataset: landslide events at national scale

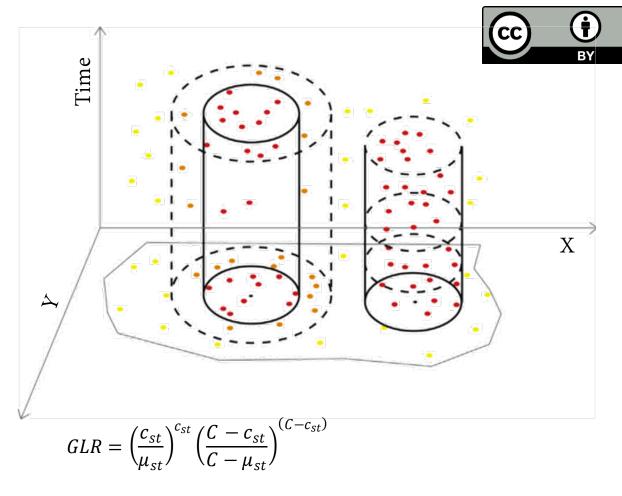
SLE = single landslide events. ALE = areal landslide events, referring to multiple landslides occurring in the same area and triggered by the same cause.




FraneItalia events

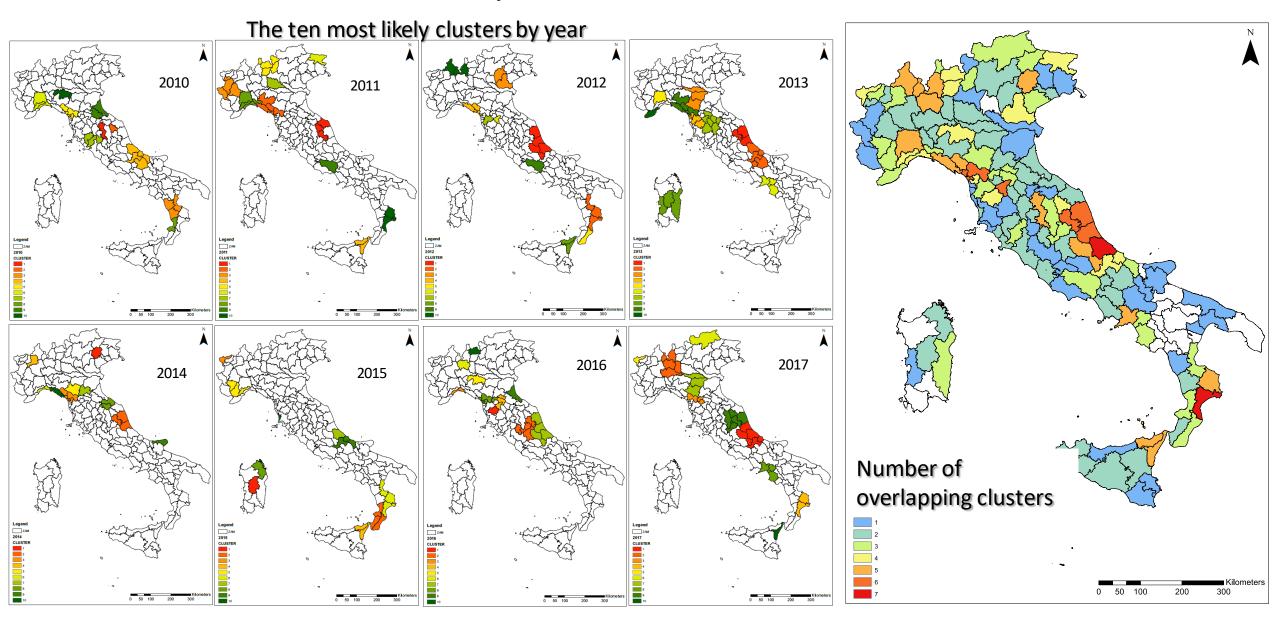
Density of events (by WZ)

Dataset: landslide events at regional scale Campania region



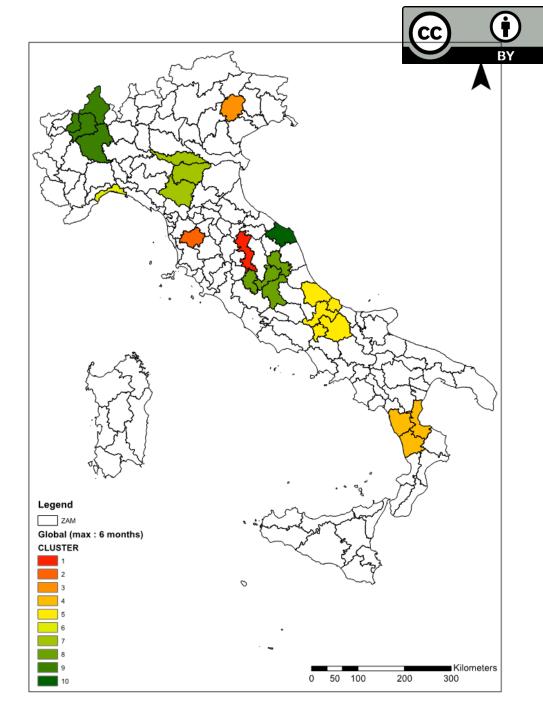
Statistical analysis

- The statistical analyses are conducted using the space-time permutation scan statistics model, accounting for the geographical spatial dimension as well as for the temporal dimension of events.
- Two types of analyses were performed, both at national and at regional scale:
 - **global analysis** encompassing the entire 8-year study period ;
 - **annual analysis** considering each single year.



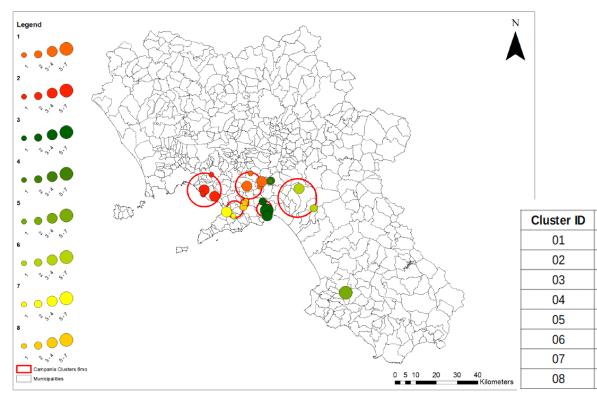
 C_{st} : events falling inside and outside $(C-c_{st})$ the cylinder μ_{st} : expected number of events

Scale	Spatial aggregation	Temporal aggregation		Max spatial size	Max temporal size	
		Annual	Global	(radius)	Annual	Global
National	Warning zone	1 day	1 month	50 Km	1 month	6 months
Regional	(None)	1 day	1 month	10 km	1 week	6 months


Results: annual analyses at national scale

Results: global analyses at national scale

The ten most likely clusters over the entire study period (2010-2017)


CLUSTER	START_DATE	END_DATE	P_VALUE	OBSERVED	EXPECTED
1	2010/12/1	2010/12/31	1.00E-17	61	4.52
2	2016/4/1	2016/4/30	1.00E-17	30	0.52
3	2014/8/1	2014/8/31	1.00E-17	43	2.03
4	2010/1/1	2010/2/28	1.00E-17	44	2.94
5	2015/1/1	2015/4/30	1.00E-17	78	12.63
6	2014/10/1	2014/11/30	1.00E-17	59	7.89
7	2013/3/1	2013/4/30	1.00E-17	79	15.46
8	2016/10/1	2016/10/31	1.00E-17	28	1.05
9	2014/11/1	2014/12/31	1.00E-17	50	6.00
10	2011/3/1	2011/5/31	1.00E-17	40	3.65

ATE END_DATE 27 2010/12/27 2010/9/11

Results: cluster analyses at regional scale

Significant cluster over the entire investigated period

Start date

2010/09/01

2010/12/01

2012/09/01

2012/09/01

2014/07/01

2015/12/01

2017/09/01

2017/10/01

End date

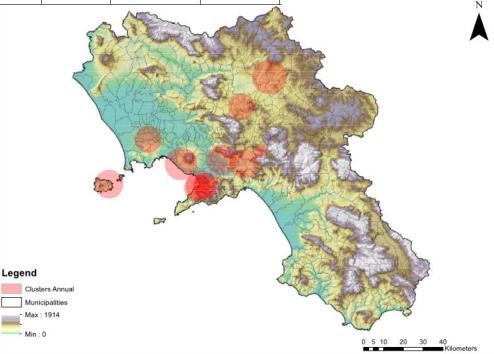
2010/09/30

2010/12/31

2012/10/31

2013/01/31

2014/07/31


2015/12/31

2017/10/31

2017/11/30

		-		r
YEAR	CLUSTER	START_DATE	END_DATE	_
2010	1	2010/12/27	2010/12/27	
	2	2010/9/9	2010/9/11	
	3	2010/12/4	2010/12/5	
2011	1	2011/3/8	2011/3/9	
2012	1	2012/12/15	2012/12/15	-
	2	2012/9/13	2012/9/13	
	3	2012/10/31	2012/10/31	
2013	1	2013/1/15	2013/1/15	-
	2	2013/1/19	2013/1/25	
	3	2013/10/6	2013/10/6	
2014	1	2014/7/31	2014/7/31	-
	2	2014/2/27	2014/3/2	
	3	2014/9/12	2014/9/12	
	4	2014/9/1	2014/9/1	
2015	1	2015/10/11	2015/10/11	Οv
2015	2	2015/10/7	2015/10/7	
2017	1	2017/11/6	2017/11/6	an
	2	2017/11/5	2017/11/5	
		C FAMILY ST	and the states	Y. N. C.

Overlapping annual clusters

Conclusions

- The **spatio-temporal cluster analysis** allows discovering clusters of landslides caused, in a given period, by a single triggering event, usually an intense rainfall.
- This approach can be considered complementary to the **landslide index** (LI), for the visualization and the quantitative assessment of landslides events inventoried both at national and regional scale:
 - LI highlights areas where the density of landslides is higher during the entire study period;
 - the spatio-temporal cluster analysis allows detecting areas characterized by relevant and recurrent landslide activity in a specific time frame.

REFERENCE: Tonini M., Pecoraro G., Romailler K., Calvello M. Spatio-temporal analysis of recent Italian landslides for warning purposes. Submitted to Journal (April 2020).

