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Motivation:
• In weather and climate science statistical modeling is applied for manifold problems. 
• It is often meaningful to apply model selection approaches, to avoid overfitting.
• Here, the boosting approach, combines model selection and parameter estimation. 
• Boosting has been originally developed for classification problems but has also been extended and used for other 

applications; i.a. non-homogeneous gaussian regression.

Goal:
• Based on the  non-homogeneous boosting (Messner et al. (2016)) we develop a boosting algorithm for a non-stationary 

Generalized Extreme Value distribution (GEV). 
• Most relevant predictor variables for location, scale and shape parameter should be identified. 

Method:
• We apply this algorithm to various toy model simulations to assess the effect of this novel approach.
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Boosting in general

• Boosting iteratively increases model coefficients.
• Most relevant parameters are increased first.
• Best set of coeff. can be found by cross validation (CV).
• Thus, not relevant parameters are zero.

• Origin: boosting for classification.

• Adoption to Non-Homogeneous Gaussian Regression.

• E.g .𝑓𝐶𝑎𝑙 𝑡, 𝜏 = 𝒩(𝛼 + 𝛽𝜇 𝑡, 𝜏 , (exp 𝛾 + 𝛿𝜎 𝑡, 𝜏 )2)).

• With: 𝛼 𝑡, 𝜏 = σ𝑙=0
6 (𝑎2𝑙 + 𝑎(2𝑙+1)𝑡)𝜏

𝑙 rest analog.
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Fig. 1: Exemplary iteration of model coefficients with Non-
Homogeneous boosting. This plot was generated with R-package
CRCH.
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Non-homogenous Boosting

• nllh: negative log-likelihood for every 
time step.

• 𝜇1, 𝜎1, … : predictor coefficients.
• 𝑿: model matrix
• 𝜈: Learning rate
• cor: correlation coeff.

Schematic overview of the iteration algorithm of Non-homogenous Boosting:
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GEV-Boosting - Preparations

Calculate first derivative
𝜕𝑙

𝜕𝜇
, 
𝜕𝑙

𝜕𝜎
, 
𝜕𝑙

𝜕𝜉

Log-Likelihood

𝐿 𝜇, 𝜎, 𝜉 =

𝑖=1

𝑁

log(𝑓 𝑦𝑖 𝜇, 𝜎, 𝜉 ) −→ 𝑙 𝜇, 𝜎, 𝜉 = 𝑓(𝑦𝑖|𝜇, 𝜎, 𝜉)

with:
𝜇(𝑡) = 𝑿𝑇𝑚
𝜎(𝑡) = 𝒀𝑇𝑠
𝜉 𝑡 = 𝒁𝑇𝑢

-Set first iteration 𝑖 = 1
-Predefine step size 𝜈

Set initial coefficient values for iteration 𝑖 = 1
𝑚𝑖=1,𝑗 = 𝑚1,1, … ,𝑚1,𝐽 𝑠𝑖=1,𝑘 = 𝑠1, … , 𝑠𝐾 𝑢𝑖=1,𝑏= 𝑢1, … , 𝑢𝐵
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GEV-Boosting - Iteration

Regression for each pred. j:
𝜕𝑙

𝜕𝜇
𝑡 ~ 𝛼𝑗𝑋𝑗(𝑡)

Find best performing predictor 𝑗 for 
𝜕𝑙

𝜕𝜇
𝑡 , e.g. with 𝑅2, rename it 𝑗∗

Regression for each pred. k:
𝜕𝑙

𝜕𝜎
𝑡 ~ 𝛽𝑘𝑌𝑘(𝑡)

Regression for each pred. b:
𝜕𝑙

𝜕𝜉
𝑡 ~ 𝛾𝑏𝑍𝑏(𝑡)

Find best performing predictor 𝑘 for 
𝜕𝑙

𝜕𝜎
𝑡 , rename it 𝑘∗

Find best performing predictor 𝑏

for 
𝜕𝑙

𝜕𝜉
𝑡 , rename it 𝑏∗

Update:
𝑚∗ = 𝑚𝑖

𝑚∗
𝑗∗ = 𝑚𝑖−1,𝑗∗ + 𝜈𝛼𝑗∗

Update:
𝑠∗ = 𝑠𝑖

𝑠∗𝑘∗ = 𝑠𝑖−1,𝑘∗ + 𝜈𝛽𝑘∗

Update:
𝑢∗ = 𝑢𝑖

𝑢∗𝑏∗ = 𝑢𝑖−1,𝑏∗ + 𝜈𝛾𝑏∗

If 𝐿 𝑿𝑇𝑚∗, 𝒀𝑇𝑠, 𝒁𝑇𝑢 > 𝐿 𝑿𝑇𝑚,𝒀𝑇𝑠∗, 𝒁𝑇𝑢 & > 𝐿 𝑿𝑇𝑚,𝒀𝑇𝑠, 𝒁𝑇𝑢∗

Update 𝑚𝑖 = 𝑚∗ or analog 𝑠𝑖 or 𝑢𝑖

𝑖 = 𝑖 + 1

for 𝝁: for 𝝈: for 𝝃:
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Apply GEV-Boosting to a toy model

𝑂 𝑡 ~ 𝐺𝐸𝑉(𝜇𝑜(𝑡), 𝜎𝑜(𝑡), 𝜉𝑜)

𝜇𝑚 𝑡 = 𝑚1 +𝑚1𝑡 + 𝑚2𝑡
2

𝜎𝑚 𝑡 = 𝑠1 + 𝑠1𝑡 + 𝑠2𝑡
2

𝜉𝑚(𝑡) = 𝑢1 + 𝑢1𝑡 + 𝑢2𝑡
2

1. Generate some toy model Observations

with

2. Model assumption

Toy model observation:

𝑂 𝑡 ~ 𝐺𝐸𝑉(𝜇𝑚(𝑡), 𝜎𝑚(𝑡), 𝜉𝑚)

with

𝜇𝑜 𝑡 = 10.2 + 50𝑡

𝜎𝑜 𝑡 = 5.5 + 10𝑡

𝜉𝑜 = 0.1
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Fig. 2: Pseudo-observation over 200 time steps generated by the toy model.
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Result

After 1000 Iteration-Steps:

𝜇𝑚 𝑡 = 11 + 42.1𝑡 − 2𝑡2

𝜎𝑚 𝑡 = 6.7 + 0𝑡 + 5.5𝑡2

𝜉𝑚 = 0.12 + 0𝑡 + 0𝑡2

𝜇𝑜 𝑡 = 10.2 + 50𝑡

𝜎𝑜 𝑡 = 5.5 + 10𝑡

𝜉𝑜 = 0.1

Toy model:

b) Toy model observation with model fit

madlen.peter@met.fu-berlin.deEGU 2020 - 08.05.2020

After 2000 Iteration-Steps:

𝜇𝑚 𝑡 = 10.5 + 50.9𝑡 + 49.6𝑡2

𝜎𝑚 𝑡 = 6.7 + 11𝑡 + 0𝑡2

𝜉𝑚 = 0.89 − 0.4𝑡 + 0𝑡2

𝜇𝑜 𝑡 = 10.2 + 50𝑡 + 50𝑡2

𝜎𝑜 𝑡 = 5.5 + 10𝑡

𝜉𝑜 = 0.1

Toy model:

Example 1: Example 2:

Fig. 3: a) Iteration of the toy model coefficients of example 1 with boosting (black line refers 
to location, red lines to scale and blue lines to shape coeff. ). Fig. b) shows the corresponding 
prediction after 1000 iteration steps with the expected value (red line), the 95%   prediction 
interval (black lines) and the corresponding pseudo-observations.

a) Iteration of coefficients b) Toy model observation with model fita) Iteration of coefficients

Fig. 4: a) Iteration of the toy model coefficients of example 2 with boosting (black line refers 
to location, red lines to scale and blue lines to shape coeff. ). Fig. b) shows the corresponding 
prediction after 1000 iteration steps with the expected value (red line), the 95%   prediction 
interval (black lines) and the corresponding pseudo-observations.
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Summary

• The work is still in progress, but …

• Algorithm for GEV-Boosting works – but not very satisfying.

• GEV-Boosting increases the most relevant predictors first, but sometimes increases minor relevant ones.

• Much more iterations are needed, compared to Non-Homogeneous Boosting.

• Maybe, the presented toy model example is not suitable. 
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