Synchronization of traveling waves in coupled dispersive systems

Nikolay Makarenko, Zakhar Makridin

Novosibirsk State University, Lavrentyev Institute of Hydrodynamics SB RAS
The research was supported by a grant from the Russian Foundation of Basic Research (Project No. 18-01-00648)

Abstract

Bifurcations of periodic traveling wave solutions to the nonlinear system of weakly coupled KdV-type equations are studied. Solutions close to cnoidal and harmonic waves are considered. Lyapunov - Schmidt procedure, allowing one to reduce the origin problem to the system of bifurcation equations, is used. The dimension reduction of the bifurcation equations system involves different techniques in both cases. These techniques are Poincare - Pontryagin functional are formulated.

1. Motivation

System of two coupled KdV equations arises in describing strong interaction of internal waves in stratified fluid (Gear \& Grimshaw 1983, Grimshaw 2013). It means there are two different modes with near coincided phase speeds c_{p} and $c_{p}+a^{2} \Delta$ (Eckart 1961). Here $a \ll 1$ and Δ is detuning parameter In this situation particle vertical displacement is given by

$$
\hat{\zeta}(z, s, \tau)=a^{2}\left(A_{1}(\tau, s) \hat{\varphi}_{1}(z)+A_{2}(\tau, \hat{\xi}) \hat{\varphi}_{2}(z)\right)+
$$

where $\hat{\xi}=s+\Delta \tau$. At leading order in a modal functions $\hat{\varphi}_{1,2}$ satisfy the following spectral problem

$$
\left\{\rho_{0}\left(u_{0}-c_{p}\right)^{2} \hat{\varphi}_{i z}\right\}_{z}+\rho_{0} N^{2} \hat{\varphi}_{i}=0, \quad(-h<z<0), \quad \hat{\varphi}_{i}=0, \quad(z=-h), \quad\left(u_{0}-c_{p}\right)^{2} \hat{\varphi}_{i z}=g \hat{\varphi}_{i}, \quad(z=0) .
$$

Here $N^{2}=-g \rho_{0 z} / \rho_{0}$ is Brunt - Vaisala frequency. Finally, the amplitude functions $A_{1,2}$ satisfy the following system

$$
\begin{equation*}
\hat{\alpha}_{1} A_{1 \tau}+\hat{\gamma}_{11} A_{1} A_{1 s}+\hat{\delta}_{11} A_{1 s s s}+\hat{\nu}_{211}\left\{A_{1} A_{2}\right\}_{s}+\hat{\gamma}_{21} A_{2} A_{2 s}+\hat{\delta}_{21} A_{2 s s s}=0, \tag{1}
\end{equation*}
$$

3. Lyapunov - Schmidt method

Let \mathscr{E} and \mathscr{F} be real Banach spaces and $\mathscr{U} \subset \mathscr{E}$ be an open set. Suppose
$\mathbb{F}: \mathscr{U} \times\left(-\varepsilon_{0}, \varepsilon_{0}\right) \rightarrow \mathscr{\mathscr { F }}$ is a smooth mapping with $\varepsilon_{0} \in \mathscr{R}$. We are looking for a solution to the operator equation

$$
\begin{equation*}
\mathbb{F}(w ; \varepsilon)=0 . \tag{2}
\end{equation*}
$$

(Operator formulation) For a known w_{0}, s. t. $\mathbb{F}\left(w_{0} ; 0\right)=0$ one can look for w as a perturbation $w=w_{0}+\vartheta$, where ϑ satisfies the equation

$$
\mathbb{A} \vartheta=\mathbb{R}(\vartheta ; \varepsilon)
$$

(3)
with $\mathbb{R}(\vartheta ; \varepsilon)=\mathbb{A} \vartheta-\mathbb{F}\left(w_{0}+\vartheta ; \varepsilon\right)$.
(Fredholm property) Frechet derivative $\mathbb{A}=\mathbb{F}_{w}^{\prime}\left(w_{0} ; 0\right)$ is supposed to be a Fredholm operator and $\operatorname{dim} \operatorname{Ker} \mathbb{A}=\operatorname{codim} \operatorname{Im} \mathbb{A}=n \geq$
(Projectors) One can define projectors $\mathbb{P}: \mathscr{E} \rightarrow \mathrm{Ker} \mathbb{A}$ and $\mathbb{Q}: \mathscr{F} \rightarrow \mathscr{\mathscr { Y }}$ generating the following decompositions of spaces \mathscr{E} and $\mathscr{\mathscr { F }}$

$$
\mathscr{E}=\operatorname{Ker} \mathbb{A} \oplus \mathscr{X}, \quad \mathscr{F}=\operatorname{Im} \mathbb{A} \oplus \mathscr{Y} .
$$

Let $\left\{e_{j}\right\}_{j=1}^{n}$ be a basis in Ker A. The function ϑ is sought in the form $\vartheta=\sum_{i=1}^{n} \xi_{i} e_{i}+\sigma$ where $\xi_{1}, \ldots, \xi_{n} \in \mathscr{R}$ and σ is defined imlpicitly by

$$
\begin{equation*}
\sigma=\widetilde{\mathbb{A}}^{-1}(\mathbb{I}-\mathbb{Q}) \mathbb{R}\left(\sum_{i=1}^{n} \xi_{i} e_{i}+\sigma ; \varepsilon\right)=0 . \tag{4}
\end{equation*}
$$

Here $\widetilde{\mathbb{A}}: \mathscr{X} \rightarrow \operatorname{Im} \mathbb{A}$ is a restriction of \mathbb{A} onto \mathscr{X}. Thus, equation (2) is equivalent to the following n-dimensional system of functional equations on the coefficients $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$

$$
\begin{equation*}
\mathbb{Q} \mathbb{R}\left(\sum_{i=1}^{n} \xi_{i} e_{i}+\sigma ; \varepsilon\right)=0, \tag{5}
\end{equation*}
$$

called the system of bifurcation equations.

REFERENCES

[1] Z. V. Makridin, N.I. Makarenko (2018) Periodic oscillations and waves in nonlinear weakly coupled dispersive systems, Proc. Stekloo Inst. Math., 300, 149-
158 . 158.
[2] Z. V. Makridin, N.I. Makarenko (2019) Bifurcations of periodic solutions to nonlinear dispersive systems with symmetry and cosymmetry, AIP Conf. Proc.

4. CNOIDAL-WAVE TYPE SOLUTION

In this case δ is finite and hence omitted below. Thus, we are looking for $T(\varepsilon)$-periodic solution where $T(\varepsilon)=T_{0} / \omega(\varepsilon)$ with $\omega(0)=1$. Operator $\mathbb{A}: \mathscr{E} \rightarrow \mathscr{F}$ defined by $\mathbb{A} w=\left(u^{\prime \prime}+\left(3 u_{0}-1\right) u, v^{\prime \prime}+\left(3 v_{0}-1\right) v\right)$ is a
Fredholm linear operator. It's kernel is two-dimensional and spanned by vectors e_{1} and e_{2}. The system of bifurcation equations is given by

$$
\int_{0}^{T_{0}(\delta)} R_{1}\left(u_{1}, v_{1} ; \ldots\right) u_{0}^{\prime} d s=0, \quad \int_{0}^{T_{0}(\delta)} R_{2}\left(u_{1}, v_{1} ; \ldots\right) v_{0}^{\prime} d s=0
$$

with $u_{1}=\xi_{1} u_{0}^{\prime}+\sigma_{1}\left(\xi_{1}, \xi_{2} ; \ldots\right)$ and $v_{1}=\xi_{2} v_{0}^{\prime}+\sigma_{2}\left(\xi_{1}, \xi_{2} ; \ldots\right)$. The origin
system admits a potential formulation system admits a potential formulation with potential

$$
l(w ; \varepsilon)=\int_{0}^{T(\varepsilon)}\left\{\frac{u^{\prime 2}}{2}+\frac{v^{\prime 2}}{2}+H(u, v ; \varepsilon)\right\} d s, \quad T_{g} l(w ; \varepsilon)=l\left(T_{g} w ; \varepsilon\right),
$$

$0=\langle\nabla l(w ; \varepsilon), X w\rangle_{\varepsilon}=-\left\langle\mathbb{Q R}\left(w_{1} ; \omega, c, \varepsilon\right), X w\right\rangle_{0}$,
(Makarenko 1996) where $g \in \mathscr{R}, w=w_{0}+\varepsilon w_{1}, w_{1}=\xi_{1} e_{1}+\xi_{2} e_{2}+$
 $\mathscr{L}_{[}[0, T(\varepsilon)], \nabla l$ is a Frechet derivative of l. The infinitesimal operator
of the time translation group $X=\partial_{\zeta}$ plays role of cosymmetry here (Yudovich 1991). Due to (9) one of the equations in (8) can be expressed via another. Thus, at leading order in ε one has

$$
\begin{equation*}
\Psi(c) \stackrel{d_{e f}}{=} \int_{0}^{T_{0}} \Phi_{u}\left(u_{0}(\tau), u_{0}(\tau+c), 0\right) u_{0}^{\prime}(\tau) d \tau=0 \tag{10}
\end{equation*}
$$

Here $\Psi(c)$ is a Poincare - Pontryagin function (Poincare 1890, Pontryagin . Finally the first a root of $\Psi(c)$, then the mapping σ is defined

$$
\begin{equation*}
\Psi^{\prime}(c)\left(\xi_{1}-\xi_{2}\right)+\Gamma(\omega, c)+\varepsilon \Pi\left(\xi_{1}, \xi_{2} ; \omega, c, \varepsilon\right)=0 . \tag{11}
\end{equation*}
$$

Here an explicit form of smooth functions Γ and Π is inessential for analysis. Thus, one can apply an implicit function theorem to express ξ_{1} as a function of all other parameters. The coefficient ξ_{2} stays free here. Finally, we get the following statement
If the phase shift c is a simple root of the function $\Psi(c)$, then for sufficiently small ε, system (6) has a $T(\varepsilon)$-periodic solution with $\omega(\varepsilon) \rightarrow$
as $\varepsilon \rightarrow 0$ as $\varepsilon \rightarrow 0$

2. Statement of the problem

Looking for traveling wave solutions and integrating once (integration constants are neglected), one get a system of coupled autonomous second order ODEs. We will work with the following system

$$
u^{\prime \prime}=H_{u}(u, v ; \varepsilon), \quad v^{\prime \prime}=H_{v}(u, v ; \varepsilon), \quad H=\left(u^{2}+v^{2}-u^{3}-v^{3}\right) / 2+\varepsilon \Phi(u, v ; \varepsilon), \quad \varepsilon \ll 1
$$

with $\Phi(0,0 ; \varepsilon)=\Phi_{u}(0,0 ; \varepsilon)=\Phi_{v}(0,0 ; \varepsilon)=0$. Such a type system appears in an appropriate choosing of coefficients in (1). When $\varepsilon=0$ decoupled system has a cnoidal-wave solution

$$
u_{0}(t)=\alpha_{2}+\delta c n^{2}(r t ; m), \quad v_{0}(t ; c)=u_{0}(t+c), \quad r=\sqrt{\delta+\lambda} / 2, \quad m^{2}=\delta /(\delta+\lambda),
$$

where $\delta=\alpha_{3}-\alpha_{2}, \lambda=\alpha_{2}-\alpha_{1}$ and α_{i} are roots of polynomial $-u^{3}+u^{2}+2 h=0$ with a given constant h. Since system (6) is invariant wrt time translations, phase shift c is arbitrary at leading order in ε. The problem is to find the value of c, providing $T(\varepsilon, \delta)$-periodic solution branching when $\varepsilon \neq 0$. Let $k \geq 1$ be an integer. Define the space \mathscr{H}_{δ}^{k} as a Sobolev space $\mathscr{W}_{2}^{k}\left[0, T_{0}(\delta)\right]$ of real periodic functions. For a pair $w=(u, v)$ we denote $\mathscr{E}_{\delta}=\mathscr{H}_{\delta}^{k+2} \times \mathscr{H}_{\delta}^{k+2}$ and $\mathscr{F}_{\delta}=\mathscr{H}_{\delta}^{k} \times \mathscr{H}_{\delta}^{k}$. The operator formulation is following. We seek the solution in the form becomes a fixed one. Thus, one can define w_{1} from

$$
\mathbb{A} w_{0}+\varepsilon \mathbb{A} w_{1}=3 w_{0}^{2} / 2+\varepsilon \mathbb{R}\left(w_{1} ; \varepsilon, \omega, c\right), \quad \mathbb{A} w_{1}=\left(u_{1}^{\prime \prime}+\left(3 u_{0}-1\right) u_{1}, v_{1}^{\prime \prime}+\left(3 v_{0}-1\right) v_{1}\right), \quad w_{0}^{2}=\left(u_{0}^{2}, v_{0}^{2}\right), \quad(\cdot)^{\prime}=d / d \zeta .
$$

Here $\mathbb{A}: \mathscr{E}_{\delta} \rightarrow \mathscr{F}_{\delta}$ and nonlinear operator $\mathbb{R}=\left(R_{1}, R_{2}\right)$ components are following
$R_{1}\left(u_{1}, v_{1} ; \varepsilon, \delta, \omega, c\right)=\varepsilon^{-1}\left(1-\omega^{2}\right)\left(u_{0}^{\prime \prime}+\varepsilon u_{1}^{\prime \prime}\right)-\frac{3}{2} \varepsilon u_{1}^{2}+\Phi_{u}\left(u_{0}+\varepsilon u_{1}, v_{0}+\varepsilon v_{1} ; \varepsilon\right), \quad R_{2}\left(u_{1}, v_{1} ; \varepsilon, \delta, \omega, c\right)=\varepsilon^{-1}\left(1-\omega^{2}\right)\left(v_{0}^{\prime \prime}+\varepsilon v_{1}^{\prime \prime}\right)-\frac{3}{2} \varepsilon v_{1}^{2}+\Phi_{v}\left(u_{0}+\varepsilon u_{1}, v_{0}+\varepsilon v_{1} ; \varepsilon\right)$. The linear system $\mathbb{A} w=0$ has a solution space spanned by the following vectors

$$
e_{1}=\left(u_{0}^{\prime}, 0\right), \quad e_{2}=\left(0, v_{0}^{\prime}\right), \quad e_{3}=\left(u_{*}, 0\right), \quad e_{4}=\left(0, v_{*}\right), \quad u_{*}(\zeta)=u_{0}^{\prime}(\zeta) \int_{\zeta_{0} \neq 0}^{\zeta} \frac{d s}{u_{0}^{\prime 2}(s)}, \quad v_{*}=u_{*}(\zeta+c) .
$$

The elements e_{3} and e_{4} are non-periodic functions in a general case, but it become periodic in the case when the cnoidal-wave solution transforms to
a harmonic wave packet. Note that soliton limit was considered in (Makarenko 1996, Wright \& Scheel 2007).

5. SMALL-AMPLITUDE HARMONIC WAVES

Consider the case when $\delta \rightarrow 0$, then $T_{0}(\delta) \rightarrow 2 \pi$ and $T(\varepsilon, \delta)=2 \pi / \omega(\varepsilon, \delta)$ where $\omega^{2}=\mu^{2}(\delta)-\varepsilon \omega_{2}(\varepsilon, \delta)$ with an analytic functions μ, s.t $\mu(0)=1$ and ω_{*}. The Vieta's theorem leads to
$\lambda=-\frac{\delta}{2}+\left(1-\frac{3 \delta^{2}}{8}-\frac{9 \delta^{4}}{128}\right)+\ldots, \alpha_{2}=\frac{1}{3}-\frac{\delta}{2}+\left(\frac{1}{3}-\frac{\delta^{2}}{8}-\frac{3 \delta^{4}}{128}\right)+$
Thus, an asymptotic formula for solution $w_{0}=\left(u_{0}, v_{0}\right)$ when $\varepsilon=0$
takes the form $u_{0}(t ; \delta)=2 / 3+\delta \varphi(t ; \delta), v_{0}(t ; \delta, c)=u_{0}(t+c ; \delta)$ where takes the form $u_{0}(t ; \delta)=2 / 3+\delta \varphi(t ; \delta), v_{0}(t ; \delta, c)=u_{0}(t+c ; \delta)$ where $\varphi=\varphi_{0}+\delta \varphi_{1}$ satisfies the equation
$A_{0} \varphi_{1}=R_{0}\left(\varphi_{1} ; \rho, \eta, \delta\right), \quad A_{0} \varphi_{1}=\varphi_{1}^{\prime \prime}+\varphi_{1}, \quad(\cdot)^{\prime}=d / d \zeta$,
$R_{0}=\eta\left(\varphi_{0}^{\prime \prime}+\delta \varphi_{1}^{\prime \prime}\right)-3\left(\varphi_{0}+\delta \varphi_{1}\right)^{2} / 2, \quad \eta=\delta^{-1}\left(1-\mu^{2}\right)$,
where $\varphi_{0}=\varrho \cos \zeta$ and $\zeta=\mu(\delta) t$. We apply LS method again. The null space of the linear operator A_{0} is invariant wrt translations of a time variable. They generate the representation of a compact Lie group $\mathrm{SO}(2)$ in the space of parameters $\kappa=\left(\kappa_{1}, \kappa_{2}\right) \in \varkappa^{2}$, where $\varphi_{1}=$ \& Trenogin 1971), which gives an invariant form of the solution φ :

$$
\varphi_{1}=T_{g}\left\{|k| \cos \zeta+\sigma_{0}(\zeta ; Q,|k|, \eta, \delta)\right\}, \quad g \in[0,2 \pi]
$$

Without loss of generality one can set $g=0$. In addition, the operator R_{0} is also invariant wrt the scaling group:
$L_{\gamma} R_{0}\left(|\kappa| \cos \zeta+\sigma_{0} ; \varrho, \eta, \delta\right)=R_{0}\left(L_{\gamma}\left\{|k| \cos \zeta+\sigma_{0}\right\} ; L_{\frac{\gamma}{2}} \varrho, L_{\frac{\gamma}{2}} \eta, L_{-\frac{\gamma}{2}} \delta\right)$
with $L_{\gamma / 2} \varphi=e^{\gamma / 2} \varphi$. The invariants of this group can be taken in the form
which does not change under the transformation $\zeta \rightarrow-\zeta$. So the function $\hat{\sigma}_{0}$ should also be even wrt ζ. Finally, the system of bifurcation tion σ_{0} should also be even wrt ζ. Finally,
equations reduces to a one scalar equation
giving an explicit form for η. Thus, one obtains the following asymptotic giving an
formula

$$
u_{0}(\zeta ; \varkappa)=2 / 3+\varkappa \varphi, \varphi(\zeta ; \varkappa)=\cos \zeta+\varkappa(\cos (2 \zeta) / 4-3 / 4)+
$$

Now we consider bimodal equation (7), taking into account that $w_{0}=$ $2 / 3+\varkappa \theta$, where $\theta=(\varphi, \psi)$ with $\psi=\varphi(\zeta+c)$:

$$
\varkappa \mathbb{A}_{0} \theta+\varepsilon \mathbb{A}_{0} w_{1}=-\varkappa^{2} \theta^{2}-3 \varkappa \varepsilon \theta w_{1}+\varepsilon \mathbb{R}\left(w_{1} ; \omega, \varepsilon, \delta, c\right) .
$$

Here is denoted $\theta^{2}=\left(\varphi^{2}, \psi^{2}\right), \theta w_{1}=\left(\varphi u_{1}, \psi v_{1}\right)$ and $\mathbb{A}_{0}: \mathscr{E}_{0} \rightarrow \mathscr{F}_{0}$ defined by $\mathbb{A}_{0}=\left(A_{0}, A_{0}\right)$. As written above θ satisfy the equation $\mathbb{A}_{0} \theta=\left(1-\mu^{2}\right) \theta^{\prime \prime}-3 \varkappa \theta^{2} / 2$. Thus, using the reasoning as above, con-
cerning group theoretical reduction, one obtains the following system of bifurcation equations for $u_{1}=\varrho_{1} \cos \zeta+\Phi_{u}^{0}, v_{1}=\varrho_{2} \cos (\zeta+c)+\Phi_{v}^{0}$ with $\Phi_{u, v}^{0}=\Phi_{u, v}(2 / 3,2 / 3 ; 0)$
$-\omega_{*} \varrho_{1}+a_{1} \varrho_{1}+\varrho_{2} \Phi_{u v}^{0} \cos c+\varepsilon \chi_{1}\left(\varrho_{1}, \varrho_{2}, \omega_{*} ; \varepsilon\right)=0$,
$-\omega_{*} \varrho_{2}-\varrho_{1} \Phi_{u v}^{0} \cos c+a_{2} \varrho_{2}+\varepsilon \chi_{2}\left(\varrho_{1}, \varrho_{2}, \omega_{*} ; \varepsilon\right)=0$,
$\sin c\left(\varrho_{1} \Phi_{u v}^{0}+\varepsilon \chi_{3}\left(\varrho_{1}, \varrho_{2}, \omega_{*} ; \varepsilon\right)\right)=0, \sin c\left(-\varrho_{2} \Phi_{u v}^{0}+\varepsilon \chi_{4}\left(\varrho_{1}, \varrho_{2}, \omega_{*} ; \varepsilon\right)\right)=0$. Here one of the equations can be eliminated due to (9) and explicit form of constants a_{i} and functions χ_{i} is inessential for analysis. In this case the Poincare - Pontryagin function is degenerate and has the following asymptotics:

Abstract

$\Psi(c ; \varkappa)=-\varkappa^{2} \Phi_{u \nu}^{0} \sin c+$

Even in this degenerate case, simple roots $c= \pm \pi k, k=0,1, \ldots$ provid Even in this degenerate case, simple roots C
an existence of phase-locked modes here

Hance $\sigma_{0}=(\varrho+\delta|\kappa|)^{2} \hat{\sigma}_{0}\left(\zeta ; \eta_{*}, \varkappa\right)$ with $\varkappa=\varrho_{*}+\kappa_{*}$. Here $\hat{\sigma}_{0}$ should satisfy the factor-equation
$\hat{\sigma}_{0}=\tilde{A}^{-1}(I-Q)\left\langle\beta\left(-\cos \zeta+\varkappa \hat{\sigma}_{0}^{\prime \prime}\right)-3\left(\cos \zeta+\varkappa \hat{\sigma}_{0}\right)^{2} / 2\right\rangle, \quad \beta=\eta_{*} \varkappa^{-1}$,

 - . . .

