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ABSTRACT
Bifurcations of periodic traveling wave solutions to the nonlinear system of weakly coupled KdV-type equations are studied. Solutions close to
cnoidal and harmonic waves are considered. Lyapunov – Schmidt procedure, allowing one to reduce the origin problem to the system of bifurcation
equations, is used. The dimension reduction of the bifurcation equations system involves different techniques in both cases. These techniques are
based on symmetry and cosymmetry properties of the origin KdV-type equations. Sufficient conditions for the solutions orbits branching in terms of
Poincare – Pontryagin functional are formulated.

1. MOTIVATION
System of two coupled KdV equations arises in describing strong interaction of internal waves in stratified fluid (Gear & Grimshaw 1983, Grimshaw
2013). It means there are two different modes with near coincided phase speeds cp and cp + a2∆ (Eckart 1961). Here a << 1 and ∆ is detuning
parameter. In this situation particle vertical displacement is given by

ζ̂(z, s, τ) = a2
(
A1(τ, s)ϕ̂1(z) +A2(τ, ξ̂)ϕ̂2(z)

)
+ . . . ,

where ξ̂ = s+ ∆τ . At leading order in a modal functions ϕ̂1,2 satisfy the following spectral problem{
ρ0(u0 − cp)2ϕ̂iz

}
z

+ ρ0N
2ϕ̂i = 0, (−h < z < 0), ϕ̂i = 0, (z = −h), (u0 − cp)2ϕ̂iz = gϕ̂i, (z = 0).

Here N2 = −gρ0z/ρ0 is Brunt – Vaisala frequency. Finally, the amplitude functions A1,2 satisfy the following system

α̂1A1τ + γ̂11A1A1s + δ̂11A1sss + ν̂211
{
A1A2

}
s

+ γ̂21A2A2s + δ̂21A2sss = 0, (1)

α̂2A2τ + γ̂22A2A2s + δ̂22A2sss + ν̂122
{
A1A2

}
s

+ γ̂12A1A1s + δ̂12A1sss + α̂2∆A2s = 0.

3. LYAPUNOV – SCHMIDT METHOD
Let E and F be real Banach spaces and U ⊂ E be an open set. Suppose
F : U × (−ε0, ε0) → F is a smooth mapping with ε0 ∈ R. We are
looking for a solution to the operator equation

F(w; ε) = 0. (2)

(Operator formulation) For a known w0, s. t. F(w0; 0) = 0 one can look
for w as a perturbation w = w0 + ϑ, where ϑ satisfies the equation

Aϑ = R(ϑ; ε) (3)

with R(ϑ; ε) = Aϑ− F(w0 + ϑ; ε).
(Fredholm property) Frechet derivative A = F′w(w0; 0) is supposed to be
a Fredholm operator and dim KerA = codim ImA = n ≥ 1.
(Projectors) One can define projectors P : E → KerA and Q : F → Y
generating the following decompositions of spaces E and F

E = KerA⊕X , F = ImA⊕ Y .

Let {ej}nj=1 be a basis in KerA. The function ϑ is sought in the form

ϑ =
n∑
i=1

ξiei + σ where ξ1, . . . , ξn ∈ R and σ is defined imlpicitly by

σ = Ã−1(I−Q)R
( n∑
i=1

ξiei + σ; ε
)

= 0. (4)

Here Ã : X → ImA is a restriction of A onto X . Thus, equation (2)
is equivalent to the following n-dimensional system of functional equa-
tions on the coefficients ξ = (ξ1, . . . , ξn)

QR

(
n∑
i=1

ξiei + σ; ε

)
= 0, (5)

called the system of bifurcation equations.

2. STATEMENT OF THE PROBLEM
Looking for traveling wave solutions and integrating once (integration constants are neglected), one get a system of coupled autonomous second
order ODEs. We will work with the following system

u′′ = Hu(u, v; ε), v′′ = Hv(u, v; ε), H = (u2 + v2 − u3 − v3)/2 + εΦ(u, v; ε), ε << 1 (6)

with Φ(0, 0; ε) = Φu(0, 0; ε) = Φv(0, 0; ε) = 0. Such a type system appears in an appropriate choosing of coefficients in (1). When ε = 0 decoupled
system has a cnoidal-wave solution

u0(t) = α2 + δ cn2(rt;m), v0(t; c) = u0(t+ c), r =
√
δ + λ/2, m2 = δ/(δ + λ),

where δ = α3 − α2, λ = α2 − α1 and αi are roots of polynomial −u3 + u2 + 2h = 0 with a given constant h. Since system (6) is invariant wrt
time translations, phase shift c is arbitrary at leading order in ε. The problem is to find the value of c, providing T (ε, δ)-periodic
solution branching when ε 6= 0. Let k ≥ 1 be an integer. Define the space H k

δ as a Sobolev space W k
2 [0, T0(δ)] of real periodic functions. For

a pair w = (u, v) we denote Eδ = H k+2
δ ×H k+2

δ and Fδ = H k
δ ×H k

δ . The operator formulation is following. We seek the solution in the form
w(t;ω, ε, δ, c) = w0(t;ω(0, δ), δ, c) + εw1(t;ω, ε, δ, c). After introducing new independent variable ζ = ω(ε, δ)t, the solution period T0(δ) = T (0, δ)
becomes a fixed one. Thus, one can define w1 from

Aw0 + εAw1 = 3w2
0/2 + εR(w1; ε, ω, c), Aw1 =

(
u′′1 + (3u0 − 1)u1, v

′′
1 + (3v0 − 1)v1

)
, w2

0 = (u20, v
2
0), (·)′ = d/dζ. (7)

Here A : Eδ → Fδ and nonlinear operator R =
(
R1, R2

)
components are following

R1(u1, v1; ε, δ, ω, c) = ε−1
(
1−ω2

)(
u′′0+εu′′1

)
−3

2
εu21+Φu(u0+εu1, v0+εv1; ε), R2(u1, v1; ε, δ, ω, c) = ε−1

(
1−ω2

)(
v′′0+ε v′′1

)
−3

2
εv21+Φv(u0+εu1, v0+εv1; ε).

The linear system Aw = 0 has a solution space spanned by the following vectors

e1 = (u′0, 0), e2 = (0, v′0), e3 = (u∗, 0), e4 = (0, v∗), u∗(ζ) = u′0(ζ)

ζ∫
ζ0 6=0

ds

u′20 (s)
, v∗ = u∗(ζ + c).

The elements e3 and e4 are non-periodic functions in a general case, but it become periodic in the case when the cnoidal-wave solution transforms to
a harmonic wave packet. Note that soliton limit was considered in (Makarenko 1996, Wright & Scheel 2007).

4. CNOIDAL-WAVE TYPE SOLUTION
In this case δ is finite and hence omitted below. Thus, we are looking
for T (ε)-periodic solution where T (ε) = T0/ω(ε) with ω(0) = 1. Oper-
ator A : E → F defined by Aw = (u′′ + (3u0 − 1)u, v′′ + (3v0 − 1)v) is a
Fredholm linear operator. It’s kernel is two-dimensional and spanned
by vectors e1 and e2. The system of bifurcation equations is given by

T0(δ)∫
0

R1(u1, v1; ...)u′0ds = 0,

T0(δ)∫
0

R2(u1, v1; ...)v′0ds = 0 (8)

with u1 = ξ1u
′
0 + σ1(ξ1, ξ2; ...) and v1 = ξ2v

′
0 + σ2(ξ1, ξ2; ...). The origin

system admits a potential formulation with potential

l(w; ε) =

T (ε)∫
0

{
u′2

2
+
v′2

2
+H(u, v; ε)

}
ds, Tgl(w; ε) = l(Tgw; ε),

=⇒

0 = 〈∇l(w; ε), Xw〉ε = −〈QR(w1;ω, c, ε), Xw〉0, (9)

(Makarenko 1996) where g ∈ R, w = w0 + εw1, w1 = ξ1e1 + ξ2e2 +
σ(ξ1, ξ2, ω, c, ε), 〈·, ·〉ε is an inner product in the space L2[0, T (ε)] ×
L2[0, T (ε)], ∇l is a Frechet derivative of l. The infinitesimal operator
of the time translation group X = ∂ζ plays role of cosymmetry here
(Yudovich 1991) . Due to (9) one of the equations in (8) can be expressed
via another. Thus, at leading order in ε one has

Ψ(c)
def
=

T0∫
0

Φu(u0(τ), u0(τ + c), 0)u′0(τ)dτ = 0. (10)

Here Ψ(c) is a Poincare – Pontryagin function (Poincare 1890, Pontrya-
gin 1934). If c = c0 is a root of Ψ(c), then the mapping σ is defined at
ε = 0. Finally, the first equation from (8) is of the form

Ψ′(c)(ξ1 − ξ2) + Γ(ω, c) + εΠ(ξ1, ξ2;ω, c, ε) = 0. (11)

Here an explicit form of smooth functions Γ and Π is inessential for anal-
ysis. Thus, one can apply an implicit function theorem to express ξ1 as
a function of all other parameters. The coefficient ξ2 stays free here. Fi-
nally, we get the following statement
If the phase shift c is a simple root of the function Ψ(c), then for suffi-
ciently small ε, system (6) has a T (ε)-periodic solution with ω(ε) → 1
as ε→ 0

5. SMALL-AMPLITUDE HARMONIC WAVES

Consider the case when δ → 0, then T0(δ)→ 2π and T (ε, δ) = 2π/ω(ε, δ)
where ω2 = µ2(δ)− εω∗(ε, δ) with an analytic functions µ, s. t. µ(0) = 1
and ω∗. The Vieta’s theorem leads to

λ = −δ
2

+

(
1− 3δ2

8
− 9δ4

128

)
+ . . . , α2 =

1

3
− δ

2
+

(
1

3
− δ2

8
− 3δ4

128

)
+ . . . .

Thus, an asymptotic formula for solution w0 = (u0, v0) when ε = 0
takes the form u0(t; δ) = 2/3 + δϕ(t; δ), v0(t; δ, c) = u0(t + c; δ) where
ϕ = ϕ0 + δϕ1 satisfies the equation

A0ϕ1 = R0(ϕ1; %, η, δ), A0ϕ1 = ϕ′′1 + ϕ1, (·)′ = d/dζ,

R0 = η(ϕ′′0 + δϕ′′1)− 3(ϕ0 + δϕ1)2/2, η = δ−1(1− µ2),

where ϕ0 = % cos ζ and ζ = µ(δ)t. We apply LS method again. The
null space of the linear operator A0 is invariant wrt translations of a
time variable. They generate the representation of a compact Lie group
SO(2) in the space of parameters κ = (κ1, κ2) ∈ R2, where ϕ1 =
κ1 cos ζ+κ2 sin ζ+σ0. Thus, we can use the reduction theorem (Loginov
& Trenogin 1971), which gives an invariant form of the solution ϕ1:

ϕ1 = Tg
{
|κ| cos ζ + σ0(ζ; %, |κ|, η, δ)

}
, g ∈ [0, 2π]

Without loss of generality one can set g = 0. In addition, the operator R0

is also invariant wrt the scaling group:

LγR0(|κ| cos ζ + σ0; %, η, δ) = R0(Lγ{|κ| cos ζ + σ0};L γ
2
%, L γ

2
η, L− γ

2
δ)

with Lγ/2ϕ = eγ/2ϕ. The invariants of this group can be taken in the
form

ζ = ζ, η∗ = δη, %∗ = δ%, κ∗ = δ2|κ|, σ̂0 = σ0(%+ δ|κ|)−2.

Hance σ0 = (% + δ|κ|)2σ̂0(ζ; η∗,κ) with κ = %∗ + κ∗. Here σ̂0 should
satisfy the factor-equation

σ̂0 = Ã−1(I −Q)
〈
β(− cos ζ + κσ̂′′0 )− 3(cos ζ + κσ̂0)2/2

〉
, β = η∗κ−1,

which does not change under the transformation ζ → −ζ. So the func-
tion σ̂0 should also be even wrt ζ. Finally, the system of bifurcation
equations reduces to a one scalar equation

β − 15κ/8 + 19κ2β/32− 1755κ3/512 + . . . = 0,

giving an explicit form for η. Thus, one obtains the following asymptotic
formula

u0(ζ;κ) = 2/3 + κϕ, ϕ(ζ;κ) = cos ζ + κ(cos(2ζ)/4− 3/4) + . . .

Now we consider bimodal equation (7), taking into account that w0 =
2/3 + κθ, where θ = (ϕ,ψ) with ψ = ϕ(ζ + c):

κA0θ + εA0w1 = −κ2θ2 − 3κεθw1 + εR(w1;ω, ε, δ, c).

Here is denoted θ2 = (ϕ2, ψ2), θw1 = (ϕu1, ψv1) and A0 : E0 → F0

defined by A0 = (A0, A0). As written above θ satisfy the equation
A0θ = (1 − µ2)θ′′ − 3κθ2/2. Thus, using the reasoning as above, con-
cerning group theoretical reduction, one obtains the following system of
bifurcation equations for u1 = %1 cos ζ+ Φ0

u, v1 = %2 cos(ζ+ c) + Φ0
v with

Φ0
u,v = Φu,v(2/3, 2/3; 0) :

−ω∗%1 + a1%1 + %2Φ0
uv cos c+ εχ1(%1, %2, ω∗; ε) = 0,

−ω∗%2 − %1Φ0
uv cos c+ a2%2 + εχ2(%1, %2, ω∗; ε) = 0,

sin c
(
%1Φ0

uv+εχ3(%1, %2, ω∗; ε)
)

= 0, sin c
(
−%2Φ0

uv+εχ4(%1, %2, ω∗; ε)
)

= 0.

Here one of the equations can be eliminated due to (9) and explicit form
of constants ai and functions χi is inessential for analysis. In this case
the Poincare – Pontryagin function is degenerate and has the follow-
ing asymptotics:

Ψ(c;κ) = −κ2Φ0
uv sin c+ . . .

Even in this degenerate case, simple roots c = ±πk, k = 0, 1, . . . provide
an existence of phase-locked modes here.
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