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Overview

= Introduction

- Storm changes over past 50 to 100 years
- What Is causing these changes?
- Future storm activity?

- Applications In insurance?

= References
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Introduction

= RMS builds models of insurance risk due to multiple hazards
= European Windstorms is one of the most important

= |nsurance companies need to know the risk over the next few years
— Core uses are for reinsurance pricing and solvency regulations
— Takes a lot of time and effort for companies to implement new view of hazard climate
— Therefore companies want stable view of hazard climate over next five to ten years

We have always used long-term climate as the basis for next few years of windstorm risk

= Researchers have recently gained much knowledge about decadal variations of storm activity

Should a new view of wind climate include decadal forecast information?
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Europe-wide storm activity ﬁ

= Europe-wide footprints for past storms from RMS L=3N ( )3P
. . = AU — u: .
— Gather all anemometer data, then apply extensive quality control procedures (=11 1,99/ “1

— Find max gust per grid-cell per storm — Wiswind in i'th cell

— U g9 = 99" percentile of wind in i'th cell
— P; = population in i'th cell

— N is no. of grid cells in study area

— Compute loss index per storm based on Klawa and Ulbrich (2003)

Timeseries of standardized aggregate loss index for main European
windstorm countries. Both one-year and five-year running mean losses.
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Dutch storm activity ﬁ

= Cusack (2012) computed losses for 1910-2010 using KNMI wind observations from five Dutch stations
— Comprehensive quality control, including station metadata (Supp Info of Cusack, 2012)
— Based on Klawa and Ulbrich (2003) loss index

= Now extended up to 2019
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Timeseries of annual storm loss in the Netherlands, with 10-year running means

Copyright © 2019 Risk Management Solutions, Inc. All Rights Reserved. 7



Atmosphere reanalyses

= Artificial trends in storm climate in reanalyses (e.g. Krueger et al., 2013)

®
a

= Use north-south mean sea-level pressure (pmsl) gradient at about 10°E as proxy of Europe-wide

storminess (black dashed line in plot)

— Assume % change in extreme storm winds similar to % change in mean wind
— Reasonable, since both connected to eddy-driven jet

= 2.5 hPa change in gradient between active
and gquiet periods

= Mean climate gradient is 15 hPa

= NB: 10% higher gusts = double storm loss

= Reanalyses suggest large reduction in
losses from 1980s/'90s to present day
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Key Points

Factor three loss decline from stormy 1980s/90s to lull in past two decades

— Regional variability within EU (not shown)

All three independent datasets show a decline to modern-day lull
— Observed gusts at stations around EU (various national met. centres)

— Extended wind records from KNMI

— Mean sea-level pressure from weather reanalyses

Dutch records contain decadal-scale variability throughout past 110 years

What do we know about the drivers of storm variability at decadal timescales?
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Background information

= Most published research articles show change in average pmsl

= Use info from slide 8 to relate pmsl gradient to storminess
— Use change in north-south pmsl gradient at about 10°E to represent Europe-wide storminess

— Weakening by about 2.5 hPa can explain much of observed loss change from 1980s/90s to 215t century lull
(although method assumes change in gusts in proportion to change in geostrophic wind - not proven)

Difference in winter (Dec-Feb) mean sea-level pressure between (2000—
2018) and (1972-1999). Data from NCEP Reanalyses 1
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Introduction to drivers ﬁ

= Researchers have identified two main drivers of storminess at decadal-to-multidecadal timescales
1. North Atlantic Ocean heat anomalies

2. Arctic heat anomalies

= Anthropogenic forcing? Has the right timescale, but not identified as key driver (yet)

— Discussed later, in Uncertainties in outlook
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North Atlantic Ocean: empirical studies ﬁ

= Peings and Magnusdottir (2014) split North Atlantic into warm and cold SST periods, 1901 to 2010

= Then plotted difference in pmsl between warm and cold SST periods
— SST from HadISST, pmsl from 20CR

o0 = pmsl changes the most over central Atlantic

Change in surface
pressure in December
to March for (warm-
cold) multidecadal
periods in the North
Atlantic, Figure 2 of
Peings and
Magnusdottir (2014)

— Projects quite strongly onto NAO

= Smaller change over central Europe, ~1to 1.5 hPa

= Warm Atlantic = easterly anomaly over Europe

A link from North Atlantic SST to European winds
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North Atlantic Ocean: process-based studies a

Observed correlation of low-pass filtered surface latent
heat fluxes and sea surface temperatures in the period
1880-2007, Figure 1b of Gulev et al. (2013).
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Gulev et al. (2013) studied SST and surface heat fluxes

70

= Found positive correlation at decadal scales % %0
&0 50
= |Indicates ocean forcing of atmosphere 40 40
30 30
= Key region in central northern North Atlantic, off Newfoundland 2 ~ W 2
-100 90 -B80 70 60 -50 40 -30 -20 -0 0 10 20

— Where storm track moves over ocean

= Peings and Magnusdottir (2014) studied climate model simulations

= Warmer North Atlantic = more latent heat in Gulev’s key area N

(CONTOUR FROM 0 TO 300 BY 30

—> Decadal scale: ocean forcing atmosphere, in observations and models e ]
W.m-2

Modeled change in latent heat flux in December—March
due to (warm minus cold) North Atlantic experiments,

Figure 4c of Peings and Magnusdottir (2014).
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North Atlantic Ocean: climate model results ﬁ

Modeled winter (Jan-Mar) change in geopotential heights at

= |nitial modelling results of North Atlantic Ocean forcing were mixed 1000 hPabetween the 1950s and 1961-90 reference period,
) _ ] Figure 4a of Omrani et al. (2014).
— Some had signal, some did not (e.g. Figure 6 of Hodson et al. 2010)

= Insight from Scaife et al. (2012) on modelling mid-lat winter
— Climate models need high top to better simulate mid-lat winter

= Omrani et al. (2014) high-top model has big signal of ocean forcing
— Larger impacts over ocean, and 75% of recent Europe decadal signal too

= Thelir result consistent with empirical and process-based studies

= Significant uncertainties remain:
— Just one model; idealised test with Atlantic-only anomalies

—> Research suggests North Atlantic forcing accounts for more than half of recent multidecadal
decline in storms
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Sea-ice forcing: empirical studies

Several studies highlight strong empirical relation between Arctic sea-ice and pmsl| anomalies
= Qver Europe, circulation anomalies closely tied to Barents+Kara sea-ice

= Map shows correlation between autumn sea-ice in Barents+Kara Seas with winter pmsl|

Less BK sea-ice = stronger Siberian High = weaker westerlies over Europe

8 ;
Correlation in 1979-2018 between Barents
- and Kara sea-ice anomalies in autumn
= (September—November, from NSIDC) with
gridded mean sea-level pressure in the
& following winter (December—February, from
*i NCEP-NCAR Reanalyses-1).
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Sea-ice forcing: process-based studies

= Cohen et al. (2020) review of process-based studies

= They suggest the most robust process is:
1. Warmer Arctic, and sea-ice loss

2. Newly-opened sea warms air above

w

. Westerlies weaken over northwest Eurasia...

AN

. Northwestern expansion of Siberian High

ol

. Local stronger Siberian High has two pathways to Europe:
= Directly inhibits storms from moving into Europe
= E.g. Rogers (1997)
= Indirectly reduces storminess by weakening polar vortex
= E.g. Jaiser et al. (2016)

= Observational studies support this causal chain
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Sea-ice forcing: climate model results

= Vast amount of research has defined a set of new climate model requirements:

1. High-top models: needed for polar vortex simulation (e.g. Omrani et al., 2014; Zhang et al., 2018)
Sea-ice decline: regionality and seasonality important (e.g. Screen, 2017)
Ocean changes accompanying sea-ice change can amplify signal by about 30% (e.g. Deser et al., 2015)

Simulation years: natural internal variability is large in high-latitude winters

a K~ WD

Interactive ozone chemistry can improve polar vortex simulation (Romanowsky et al., 2019)

—> Experimental details require scrutiny

= Will show results from four studies more closely matching model requirements

18
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Sea-ice forcing: climate model results

= Nakamura et al. (2015)
— High-top model; historical sea-ice test; 60-year simulations; no ocean feedback

— Plot shows change in geopotential height at 500 hPa (m) between (2005-09) and
(1979-83) mean sea-ice extents

—> Change in north-south gradient in Europe similar to observed

= Blackport and Kushner (2016)

— Intermediate-top model; 300-year simulations; tested a 50% larger sea-ice decline
than history; no ocean feedback

— Plot: change in geopotential height at 500 hPa (m) due to their sea-ice decline

—> Slightly smaller change in north-south gradient in Europe than observed

=  After scaling sea-ice decline to observed change over past 30 years
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Sea-ice forcing: climate model results

= Smith et al. (2017)

— High-top model; sea-ice declines similar to past 30 years; 300-year simulations;
with ocean feedback

— Plot shows change in pmsl (hPa) for (low — high) sea-ice extents

—> Change in north-south gradient in Europe slightly more than half of
observed recent multidecadal decline

= Zhang et al. (2018)

— High-top model; 50-year simulations; sea-ice decline similar to past 30 years;
no ocean feedback

— Plot shows change in geop ht at 500 hPa (m) due to their sea-ice decline

—> Change in north-south gradient in Europe similar to observed 6OEE120E
90
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Copyright © 2019 Risk Management Solutions, Inc. All Rights Reserved. 20



Sea-ice forcing: climate model results

There are many other studies of sea-ice decline

= |n general, they use older climate models, most commonly not high-top

Or the sea-ice perturbation is not like history — in terms of regional amplitude or seasonality

= Please share if you know others as good as the four on previous slides?

—> Sea-ice explains more than half of recent multidecadal decline in European storminess
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Combined impacts of ocean and sea-ice? ﬁ

= Process-based analysis support a strong connection between these two main drivers
— Atlantic Ocean inflow modulates sea-ice extents in the Barents and Kara Seas
— From analysis of climate models (e.g. Mahajan et al., 2011)

— And observational datasets (e.g. Arthun et al., 2012)
— Connection is two-way: changes in sea-ice affecting AMOC/THC (Sévellec et al., 2017)

= Causal chain:
— Cooler northern Atlantic drives more storm genesis, and cooler water inflow causes more sea-ice in the Atlantic sector

— Extra sea-ice weakens Siberian High, and makes it more likely for the storm track to go through Europe
— This linkage between northern ocean and sea-ice observed over past 100 years

= No climate model results quantifying how the two processes combine

—> No destructive interference: combined signal no smaller than larger of two individual signals
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Key Points ﬁ

= Heat anomalies in North Atlantic Ocean and Arctic drive multidecadal storm activity

= Likely to explain more than one half of decline from stormy 1980s and '90s to the 215t century lull
— From observational studies of physical processes and pathways

— Supported by experiments with better climate model configurations

= What does this mean for European windstorm climate over the next few years?
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North Atlantic Ocean Outlook (1/2) ﬁ

= Key region (central northern Atlantic) has been cooling recently

— Driving raised storminess in North Atlantic, but RMS windstorm dataset indicates no similar signal over Europe
= Will cooling continue?
= Encouraging skill of climate models (Yeager et al. 2012; Hermanson et al. 2014) to predict North Atlantic SST

= But no available forecasts for the key area in central northern Atlantic over next 5-70 years...

Timeseries of mean temperature anomaly in the top 400 m of the ocean in November to April (left plot), for the region off Newfoundland
indicated by red box in the plot on right. Ocean temperatures from EN4 were linearly de-trended to remove global warming signal,
because storm track forcing depends more on north-south gradients of temperature, rather than absolute values in a single region
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North Atlantic Ocean Outlook (2/2) ﬁ

= Smeed et al. (2018) report on 15% reduction of AMOC since 2008
= Gastineau and Frankignoul (2012) find this cools northern Atlantic in models

= But warmer Gulf Stream (see maps) suggests increased heat advection into key area

Anomalies of the annual mean temperatures over the top 600 m of the ocean in recent years, with respect
to 1950-2019 climatology. Ocean temperatures from EN4, provisional values used for December 2019.

Values are plotted where ocean is deeper than 100 m
2015

= Qverall, weaker AMOC suggests
key ocean area remains cool

= With significant uncertainty

10 20 30 40 50 80 70 80
10 20 30 40 50 80 70 80

= Decadal model forecasts would
be useful here

10 20 30 40 50 80 70 80
10 20 30 40 50 80 70 80
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Barents and Kara Sea-ice Outlook ﬁ

The sum of sea-ice area in Barents and Kara Seas for December

= Two main drivers of BK sea-ice extents and January, fromNSIDC__

35

1. Anthropogenic: 25 wW- \\/\’\/‘\\/\ NA
’ REAVAVS

— This forcing is on longer timescales, and alters other drivers 05

— Greenhouse gases cause amplified warming at high latitudes

— IPCC : very likely to continue to shrink through 215t century

sea-ice area (millions km*2)

1979/80 1989/90 1999/00 2009/10 2019/20
Year

2. Advection of North Atlantic ocean heat anomalies

— Process found in observations (Arthun et al., 2017) and models (Yeager et al., 2015)
— Recent cooling in northern Atlantic suggests this forcing on BK sea-ice is active
— Expectation for northern Atlantic to remain cool...

— Figure S10 of Yeager et al. (2015) — decadal forecasts indicate slight upward trend in Barents sector sea-ice

—> Slight reversal of multidecadal BK sea-ice decline over the next few years
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Uncertainties (1/2)

= Uncertain predictions of future state of the two storm drivers:
— Will warm Gulf Stream anomalies overcome a slower AMOC to warm the central northern Atlantic?
— Is the current stormier North Atlantic driving a stronger AMOC, but not yet distinguishable from noise?
— Wil the unexplained 6-year cycle in winter sea-ice in previous slide cause a flip back to reduced sea-ice?

= Anthropogenic forcing
— On long timescales, it's a battle between two large opposing forces
— Tropical upper troposphere warming increasing storminess
— Arctic sea-ice melt weakening westerlies, reducing storminess

— IPCC: “Substantial uncertainty and thus low confidence remains in projecting changes in northern hemisphere storm
tracks, especially for the North Atlantic basin"

— Further, could the transient response include imbalances between the two big opposing forcings of storminess?
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Uncertainties (2/2) a

= An explosive, sulphur-rich volcanic eruption in the tropics could significantly alter European
windstorm risk over the following few years (e.g. Fischer et al., 2007)

= Natural variability, with no known link to decadal drivers, could overwhelm all forcings?

= Uncertainty in method: we use time-mean pmsl gradients to inform on changes in peak gusts
— Peak gust is a combination of geostrophic, and ageostrophic mesoscale components

— Foregoing analysis assumes ageostrophic part changes in proportion with the geostrophic part

—> There are many sources of uncertainty in forecasts for next ten years
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Key Points ﬁ

= Cooler northern Atlantic could be key influence over next few years

—> More storminess, especially over North Atlantic
—> Less ocean heat into Barents Sea, slight increase in sea-ice, then storm-track favours path through Europe

= Qverall, the forecast suggests raised storm losses in Europe compared to past 10 years

= But there are many uncertainties
— Evolution of the two main drivers is uncertain

— Other processes may become more prominent in next ten years
* E.g. major volcanic eruption, anthropogenic effects (esp. tropical heating), natural internal variability
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Defining hazard climate for insurance companies a

Translating climate model skill to new view of hazard climate has some challenges

= We know a view of hazard climate covering next 5 to 10 years is more practicable for insurance

What about regionality?

— Recent multidecadal signal has regionality, larger amplitude changes in northwest Europe etc
— Problem: regional storm information from climate model forecasts is more uncertain
= Large internal variability + model biases in communicating signals from remote areas (e.g. Smith et al., 2017)

— Should we use forecasts of key drivers, then a simpler stats model to relate this to European regional signals?

Incomplete information in forecast creates uncertainty:

— Forecast refers to a mean storminess change; insurance companies need to know full pdf

= Reliability is important for insurance (avoid insolvencies etc); how to manage forecast uncertainty?

Keen to get the views of insurance companies, researchers, decadal forecasting groups
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