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Main Points:
• We use a mulF-proxy approach (δ13C, 14C, 

δ44Ca) and modelling to invesFgate what 
causes the large shiV (~8‰) in speleothem 
δ13C in northern Spain aVer the last 
deglaciaFon

• We find that in-cave and karst processes can 
only explain part of the δ13C shiV
➢ changes in soil δ13C need to be invoked, 
suggesNng a shiO in surface vegetaNon 
type and/or density occurred
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The Problem

• In Western Europe, speleothem δ13C o5en closely resembles 
temperature reconstruc:ons (e.g., Genty et al., 2003, Genty et al., 2006, 

Moreno et al., 2011, Fig. 1).
• The causes for this temperature sensi:vity remain poorly constrained, 

as many processes could be responsible:
• Vegeta:on and soil processes
• Host rock dissolu:on regime (open vs. closed system)
• In-cave degassing and carbonate precipita:on (incl. prior calcite 

precipita:on)
• Here, we inves2gate the rela2ve importance of these processes on 

δ13C in a stalagmite from Northern Spain as an example for other 
Western European records (Fig. 1).
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Figure 1: Speleothem records from Western Europe covering the last deglacia:on. 
Data was extracted from the database SISAL (v2, Comas-Bru et al., 2020; references 

for the individual records are at the end of this presenta:on).
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Speleothem Carbon Isotopes

Adapted from Lechleitner et al., 2016, GCA
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Ancillary proxy

Ancillary proxies have disBnct sensiBvity to 1-2 processes
➢ We use them in a soil-karst-cave model to esBmate the resulBng change in δ13C from different iniBal condiBons in 
soil, bedrock, and cave. 



Study site & Methods

Study site:
• Stalagmite Candela from El Pindal cave, northern Spain 

covers the last deglacia8on (25-7 ka BP)
• The site is characterized by temperate climate condi8ons 

(MAAT: ~12°C, MAP: ~1250 mm) and is adjacent to the 
present day coastline

• The cave is covered by a thin soil (0-60 cm), vegeta8on is
composed of sparse shrub pasture and gorse shrub (Rudzka
et al., 2011).

Methods:
Geochemistry: Samples for δ13C, 14C, trace elements, and δ44Ca were taken 
from the same aliquot of powder, drilled at loca8ons previously sampled for U-
Th measurements.
Modelling: Using CaveCalc (Owen et al., 2018), we inves8gate the sensi8vity of
the different proxies to processes in soil, karst and cave. The solu8ons most
closely matching the dead carbon frac8on (DCF, 14C reservoir effect) and δ44Ca
were selected from a large ensemble of simula8ons, and the δ13C from these
solu8ons was compared with the stalagmite (Fig. 2).
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Figure 2: Flowchart detailing the modelling procedure 
and input parameters.



Results: Geochemistry

• δ13C closely follows SST record (Darfeuil et al., 2016, Fig. 3)
• DCF: affected by soil 14C age and addiEon of 14C-dead host rock carbon
• Mg/Ca and δ44Ca: affected by prior calcite precipitaEon (PCP)
• Mg/Ca also affected by marine aerosol contribuEon

➢ δ44Ca fits a theoreEcal calcite precipitaEon trend, thus we use δ44Ca 
to evaluate the influence of PCP on δ13C (Fig. 4)
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Figure 3: Geochemical records from stalagmite Candela. High resolu9on 
δ13C and Mg/Ca by Moreno et al., 2011. The Iberian Margin sea surface 
temperature (SST) record is by Darfeuil et al., 2016. 

Figure 4: Comparison of stalagmite Mg/Ca and δ44Ca data to theore9cally calculated 
carbonate precipita9on lines (f_ca indica9ng the amount of CaCO3 that is lost from 
the solu9on with increasing precipita9on). The excellent match between measured 
and theore9cally predicted δ44Ca highlights its suitability for PCP reconstruc9on. 
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Results: Modelling

Ancillary proxies (DCP and δ44Ca) – ca. 10,000 models for early Holocene, 4,000 models for late Glacial: without addi*onal 
constraints, changes in soil pCO2, cave pCO2, and dissolu*on regime in response to climate are masked by compe*ng effects from 
different processes. 

Figure 5: Model results for the ancillary proxies, DCF and δ44Ca. Each shaded dot represents one solu?on fiAng both proxies given different 
ini?al condi?ons in CaveCalc. Solu?ons were chosen as long as they fall within the error of the measured proxy (grey lines). Ini$al 
parameter ranges: Soil pCO2 (500-20,000 ppm), cave pCO2 (200-2,500 ppm), gas volume (0-500 L), frac?on atmospheric air added (0-0.5), 
soil F14C (80-100 pMC), pyrite added (0-1x10-5) 



Results: Modelling (II)

δ13C and Mg/Ca values corresponding to 
ancillary proxy solutions
• For both δ13C and Mg/Ca, the modelled 

reconstruction based on DCF and δ44Ca 
does not represent the real variability in 
the proxy.

• Mg/Ca at Pindal cave is affected by marine 
aerosol contributions (increasing with 
rising sea level during deglaciation).

• What else affects δ13C? Likely the effect of 
changes in soil gas δ13C, which in turn is 
related to vegetation type and density, and 
exchange between soil gas and 
atmosphere. 

Figure 6: Model results  for δ13C and Mg/Ca. Each dots represents one of the solu=ons fi?ng both DCP and δ44Ca. 



Discussion & Conclusions
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• By genera)ng a large ensemble of simula)ons with differing 
ini)al condi)ons, we can evaluate the importance of karst 
processes and their combina)ons on DCF, δ44Ca, δ13C, and 
Mg/Ca.

• We find that while we can find models matching the DCF and 
δ44Ca records, the combina)on of processes is not trivial to 
interpret, resul)ng in no clear signal over the deglacia)on (e.g., 
increasing soil pCO2).

• Even this large ensemble of models cannot reproduce the 
decrease in δ13C found in stalagmite Candela over the 
deglacia)on. 

• The decrease in Candela is of similar magnitude to other 
stalagmite records from Western Europe. Our results suggest 
that changes in the soil gas δ13C are needed in order to explain 
these shi9s. It is likely that these reflect changes in surface 
vegetaAon type (grassland vs. forest transiAon) that occurred 
with the end of the last ice age. Figure 7: Calculated residual δ13C, i.e., difference between measured proxy value and 

model median. The upper and lower quanCles are indicated by light blue lines.  
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