Seismo-acoustic ground coupling: Wave types, transfer efficiency, and near-surface structure

Results from a small-scale acoustic ground coupling experiment

EGU2020-7484

© Authors. All rights reserved

Artemii Novoselov

Florian Fuchs Götz Bokelmann

Conrad observatory (ZAMG)

85 m

45 m

Experiment setup

MetLift (meteo data)

> former CTBTO test site = our field site

> > ufnahmedatum: 8/28/2016 Breite 47.927383° Län

© 2018 Google

Motivation

- How sensitive are geophone nodes to acoustic perturbations?
- Can we use them to locate acoustic sources at height?

Experiment field site

11

Experiment field site

Instrumentation

100 FairField Zland Geophone nodes (3C, 5Hz)

4 Hyperions IFS-5111 Infrasound sensors (seismically decoupled)

75g NEM (fuel + head)

Moving source

- can we track it acoustically using geophone nodes ?

• Test run for thunder analysis with geophone nodes

• Can we locate/separate sources along lightning strike?

Wave types:

What kind of wave types do acoustic sources induce in the ground?

Having co-located seismic and infrasound sensors we can calculate the energy transmission into the ground:

Energy Coupling Efficiency

Conversion from acoustic energy to seismic energy ~ 1%

Having co-located seismic and infrasound sensors we can infer near surface elastic parameters:

Seismic vertical displacement
$$U_x = rac{-iV_{\mathrm{air}}p_0}{2\omega(\lambda+\mu)}$$
 Dynamic pressure on infrasound sensor $U_z = rac{-V_{\mathrm{air}}p_0}{2\omega(\lambda+\mu)} \left(rac{\lambda+2\mu}{\mu}
ight)$ Lamé parameters

Ben-Menahem, A. & Singh, S. J., 1981. Seismic Waves and Sources, Springer, New York, NY.

Measuring dynamic air pressure, and 3D seismic displacement allows to infer Lamé parameters!

Doing this for different frequencies allows for a depth profile!

Estimating soil parameters:

This was only a brief preview ...

Got interested?

Await the upcoming paper in GJI (submitted):

Acoustic-to-seismic ground coupling: coupling efficiency and inferring near-surface properties

Artemii Novoselov, Florian Fuchs, Goetz Bokelmann

Check out the comprehensive dataset and experiment description document:

https://doi.org/10.25365/PHAIDRA.111

Watch out for waveform data soon being made available at EIDA, using network code 6A (2019)

https://www.orfeus-eu.org/data/eida/