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Evidence for
iIsopycnal control of
ocean water masses

Antarctic Intermediate
Water (AIW) seems to
follow isopycnal
surfaces (defined here
in terms of gy)

Idea dating back to
Iselin , Montgomery
etc...
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Consequence for mixing and stirring of tracers

v'C' = —KVC

Redi (1982) key assumption: Symmetric part of mixing
tensor K is diagonalized by the isopycnal and diapycnal

directions
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Consequence for mixing and stirring of tracers

v'C' = —KVC

Redi (1982) key assumption: Symmetric part of mixing
tensor K is diagonalized by the isopycnal and diapycnal
directions

K; Essential to get the isopycnal
i 0(107) directions right to avoid
d spurious diapycnal mixing!!!
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Numerical evidence for isopycnal mixing

Abernathey, Ferreira and Klocker, 2013
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McDougall (1987): Potential density surfaces are very sensitive to
choice of reference pressure and may exhibit considerable
differences

. Cause:
Thermobaricity
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McDougall (1987): Potential density surfaces are very sensitive to
choice of reference pressure and may exhibit considerable
differences

. Cause:
Thermobaricity
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Neutral density: What is it

General problem: Density-spiciness (y, &) re-mapping of (S, @) space

p=p(S,0,p) =p,.&p)
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Neutral density: What is it

General problem: Density-spiciness (y, &) re-mapping of (S, 8) space

p=p(S,0,p) =p,. ¢, )

Neutral Density Yy = yV (S, 0) is only density-like variable satisfying

ap

~ A(vN o
p=p,p) Y 0

yN makes seawater look like a single component fluid with all attendant
benefits: materially conserved PV, perfect predictor of vertical stability
and shear, zero buoyancy surface, geostrophic streamfunction, etc...




Looking for observational evidence for superiority of
neutral density over potential density (Pingree 1972)
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Fig. 4. T, S values for all stations shown in Fig. 1, illustrating the incorrectness of using
ay in these regions.

Fig. 1. Chart of the area showing the positions of Discovery Stations.

Spread in (6, S) properties
reduced on potential
density surfaces referenced
to reference pressures
close to actual pressures

Question: Are neutral
surfaces minimizing spread
in (8,S) properties?
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FIG. 8. Contour plot in neutral surface NSa of ¢[R, — 1}J/[R, — ¢},
the ratio of the lateral gradient of # in a potential density surface,
V.6, to that in the neutral surface, V,6.

McDougall (1987) analyzed the
problem and discussed many
examples where spread in (6, 5)
properties is less on neutral
surfaces than on potential
density surfaces

Isopycnal gradients can be as
much as 4 times larger on
potential density surfaces than
on neutral surfaces



[F ONLY LIFE WAS THAT
SIMPLE...
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yN = 27.9366
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Isopycnal gradients
(using g,) of @ and S
can be reduced by as
much as a factor of 2
relative to isoneutral
gradients about 2000

dbar deeper than
actual pressure



O on yN = 27.9366 6 on o, = 45.5302
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Depth [km]

Density surfaces and Turner angle

e Differences between
density variables
exacerbated in salt finger
(45< T, <90)

* Density differences
minimal in doubly-stable
regions (—45 < T, < 45)
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Theory: generalization of McDougall (1987a,b)
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Doubly stable: Doubly diffusive:
y"N better than There is always a

o(S, 0, p,) for S but not o(S, 0, p, ) variable
for 8 or vice versa better than yN




latitude [degrees])

Explanation for van Sebille et al. (2011) finding that o, outperforms y, for
tracing Labrador Sea Water to Abaco Line in Western Boundary Current?

Speed in cLSW layer from OFES [cm/s]
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Van Sebille et al. (2011)




14
Mean profile at Abaco line

Van Sebille et al. (2011)
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Summary

» Neutral density is optimal for making seawater look like a
simple component fluid with all attendant benefits. Optimality
for predicting vertical stability, vertical shear, conservative PV,
etc...

=> Justify the construction of globally defined density variable
maximizing neutrality as discussed by Trevor McDougall and Geoff
Stanley in next 2 talks



Summary

* Neutral density is optimal for making seawater look like a simple
component fluid with all attendant benefits. Optimality for predicting
vertical stability, vertical shear, conservative PV, etc...

 However, neutral density is not optimal for the following properties
that are more relevant to stirring and mixing:
* Minimising the spread in (8, S) properties
* Minimising the energy cost of adiabatic and isohaline parcel exchange
(material surfaces exist for which energy cost is negative (Tailleux, 2016))

* Implications: Assumption that neutral rotated diffusion tensor is
diagonal questionable

* Double-diffusive region: testbed for mixing parameterisations



Data/Ocean State Estimate misfit for T at 300 m Forget et al. (2015)
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“It does not matter
how beautiful your
theory or how smart

- you are. If it does not

agree with
experiments, it’s
wrong.”

Richard P. Feynam




| would rather have questions that
can't be answered than answers that
can't be questioned.
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