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I n t r o d u c t i o n
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I n t r o d u c t i o n

• Scattering effect occurs everywhere along the fiber

• The backscattering light contains the information of 
strain from where it was generated

DAS principle
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I n t r o d u c t i o n

DAS principle: Strain acquisition 

• Optical phase directly related to strain applied to
the fiber core over a gauge length

• Time derivative of the strain -> strain rate
• Strain-rate unit : nm/m/s
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I n t r o d u c t i o n

DAS principle: Acquisition parameters

• Fiber distance
• Optical power
• Pulse width 
• Pulse rate frequency
• Spatial sampling resolution

• Gauge length
• Derivation time 

• Parameters to adjust : 



M a c h i n e  L e a r n i n g  a p p l i e d t o  D A S  s u r v e y s
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M a c h i n e  L e a r n i n g  a p p l i e d t o  D A S  s u r v e y s

Pipeline monitoring for intrusion detection:
• Third party works detection and location using DAS is commonly applied in different contexts
• Challenge in identifying the origin of the signal: 

▪ Necessity of pattern recognition for relevant alarm.
▪ Source and amplitude analysis for determining the threat at the pipeline neighbourhood.
▪ The source identification must be fast, accurate and robust.
▪ For its application to DAS data, the used method must be able to handle a big amount of 

data.

Solution: A Machine Learning algorithm enabling Classification of patterns before the alert release

Context of the study
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Detection of signal 
of potential interest

Machine Learning 
with Random 

Forest algorithm

Signals 
Classification

Decision of 
alert release

…

IF
Identified class = Risk

AND
Corresponding energy band

>threshold:

ALERT

M a c h i n e  L e a r n i n g  a p p l i e d t o  D A S  s u r v e y s
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Spectral content
between 5Hz 

and 95Hz

The data processing chain
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Signal event
Database

Machine Learning 
with Random 

Forest algorithm

Signals 
Classification

Comparison
True/Predicted

M a c h i n e  L e a r n i n g  a p p l i e d t o  D A S  s u r v e y s

Signal event
Database

(Sub-Samples)

Training chain

Class 1

Class 2
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…
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Test of the use of the supervised classifier named Random Forest algorithm, an ensemble 

learning method based on the use of decision trees

Training set: 
Class determination

Discriminating attributes:

• Duration 
• skewness
• fmax

• Kurtosis
• Spectral properties
• 50+ features

Random Forest

…

Tree 1

Tree 2

Tree n

Decision = 
Classification

1

M a c h i n e  L e a r n i n g :  R a n d o m  F o r e s t
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Waveform Attributes: 23
1. Duration
2. Max/Mean ratio
3. Max/Median ratio
4. Ascending/Descending time ratio
5. Kurtosis of raw signal
6. Kurtosis of signal envelop
7. Skewness of raw signal
8. Skewness of signal envelop
9. Number of peaks in autocorrelation function
10. Energy in 1st third part of autocorrelation function
11. Energy in remaining part of autocorrelation function
12. Ratio of 11 and 10
13-17. Energy of the signal filtered in 5-10Hz, 10-30Hz, 30-50Hz, 50-75Hz and 75-99Hz
18-22. Kurtosis of the signal filtered in 5-10Hz, 10-30Hz, 30-50Hz, 50-75Hz and 75-99Hz
23.       RMS between decreasing part of the signal and 𝐼 𝑡 = 𝑌𝑚𝑎𝑥 −

𝑌𝑚𝑎𝑥
𝑡𝑓−𝑡𝑚𝑎𝑥

𝑡

Spectral Attributes: 17
24. Mean of the Discrete Fourier Transform (DFT)
25. Max of the DFT
26. Frequency at the maximum DFT
27. Frequency at the centroid
28. Central frequency of the 1st quartile
29. Central frequency of the 3rd quartile
30. Median of the normalized DFT

31. Variance of the normalized DFT
32. Number of peaks in normalized DFT
33. Number of peaks (>0.75 DFTmax)       
34-37.   Energy in [0, 1/4]Nyf, [1/4, 1/2]Nyf, [1/2, 3/4]Nyf, [3/4, 1]Nyf
38. Spectral centroid
39. Gyration radius
40. Spectral Centroid width

Pseudo-Spectrogram Attributes: 17
41. Kurtosis of max of all DFTs as a function of time
42. Kurtosis of median of all DFTs as function of time
43. Mean ratio between max and mean of all DFTs
44. Mean ratio between max and median of all DFTs
45. Number of peaks in the curve of temporal evolution of DFTs max frequency
46. Number of peaks in the curve of temporal evolution of DFTs mean frequency
47. Number of peaks in the curve of temporal evolution of DFTs median frequency
48. Ratio between 45 and 46
49. Ratio between 45 and 47
50. Mean distance between max and mean of all DFTs as function of time
51. Mean distance between max and median of all DFTs as function of time
52. Number of peaks in the curve of centroid frequency spectrum DFT
53. Number of peaks in the curve of max frequency spectrum DFT
54. Ratio between max frequency and centroid frequency DFTs
55. Mean distance between 1st quartile and median of all DFTs as function of time
56. Mean distance between 3rd quartile and median of all DFTs as function of time
57. Mean distance between 3rd and 1st quartiles of all DFTs as function of time

Hibert et. al, 2014, Provost et al., 2017; Hibert et al., 2017

M a c h i n e  L e a r n i n g :  U s e  o f  t e n s  o f  a t t r i b u t e s
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E x e m p l e  o f  p i p e l i n e  m o n i t o r i n g
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Spectrogram

P i p e l i n e  m o n i t o r i n g :  T h i r d  p a r t y  w o r k s  c l a s s i f i c a t i o n

Manual Compactor
Energy band [5 - 95]Hz 
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Spectrogram

P i p e l i n e  m o n i t o r i n g :  T h i r d  p a r t y  w o r k s  c l a s s i f i c a t i o n

Excavation
Energy band [5 - 95]Hz 
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Spectrogram

P i p e l i n e  m o n i t o r i n g :  T h i r d  p a r t y  w o r k s  c l a s s i f i c a t i o n

Drilling
Energy band [5 - 95]Hz 
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Spectrogram

P i p e l i n e  m o n i t o r i n g :  T h i r d  p a r t y  w o r k s  c l a s s i f i c a t i o n

Jack hammer
Energy band [5 - 95]Hz 
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Spectrogram

P i p e l i n e  m o n i t o r i n g :  T h i r d  p a r t y  w o r k s  c l a s s i f i c a t i o n

Sheet pile
Energy band [5 - 95]Hz 
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Spectrogram

P i p e l i n e  m o n i t o r i n g :  T h i r d  p a r t y  w o r k s  c l a s s i f i c a t i o n

Circular saw
Energy band [5 - 95]Hz 
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Energy band [5 - 95]Hz 

Spectrogram

P i p e l i n e  m o n i t o r i n g :  T h i r d  p a r t y  w o r k s  c l a s s i f i c a t i o n

Transportations



20

P i p e l i n e  m o n i t o r i n g :  R e s u l t s

Then:
• In this study, we work on 7 classes of event, numbered from 1 to 7.

• Because DAS acquisition can generate traces every few meters along fibres of tens of 
kilometres, two methods are used for classification using Random Forest algorithm:

1. The first one is signal based: The algorithm is using each single trace/station for 
the signal classification.

2. The second one is event based: A cluster of stations, identified as recording the 
same event, is used by the algorithm for the source signal classification. The 
majority of votes will release the final ID of the event.

• Three parameters are used to check the efficiency of the pattern ID using Machine 
Learning: Precision, Recall and Accuracy
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P i p e l i n e  m o n i t o r i n g :  R e s u l t s

Quality Control parameters

Negative Positive

Negative True negative False positive

Positive False negative True positiveA
ct

u
al

Predicted

Accuracy  
𝑻𝒓𝒖𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆+𝑻𝒓𝒖𝒆 𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆

𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆+𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆

Precision    
𝑻𝒓𝒖𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆

𝑻𝒓𝒖𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆+𝑭𝒂𝒍𝒔𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆

Recall    
𝑻𝒓𝒖𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆

𝑻𝒓𝒖𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆+𝑭𝒂𝒍𝒔𝒆 𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆

F1 Score    𝟐 ∗
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∗ 𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏+𝑹𝒆𝒄𝒂𝒍𝒍
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P i p e l i n e  m o n i t o r i n g :  R e s u l t s

First approach: use of the same number of samples for each class

The first classifier was trained
using 50 samples of each class

Global good classification rate

1 - False alarm rate for each class 1 – Lack of detection rate for each class
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Confusion matrix for signal Confusion matrix for event

First approach: use of the same number of samples for each class

P i p e l i n e  m o n i t o r i n g :  R e s u l t s

For all studied events:
Classification with this 

algorithm is 88.46% correct 
with an accuracy

of 91.28%

Classes:
1. Manual compactor (75)
2. Excavation (551)
3. Drilling (125)
4. Jack hammer (1726)
5. Palplanche (105)
6. Circular saw (321)
7. Transportation (538)
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P i p e l i n e  m o n i t o r i n g :  R e s u l t s

Second approach: Training samples are taken proportional to their natural distribution 

occurrences 

Our classifier was trained
using a half of the total 

dataset

Global good classification rate

1 - False alarm rate for each class 1 – Lack of detection rate for each class
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Confusion matrix for signal Confusion matrix for event

P i p e l i n e  m o n i t o r i n g :  R e s u l t s

Second approach: Training samples are taken proportional to their natural distribution 

occurrences 

For all studied events:
Classification with our 

algorithm is 100% correct with 
an accuracy
of 98.69%

Classes:
1. Manual compactor (75)
2. Excavation (551)
3. Drilling (125)
4. Jack hammer (1726)
5. Palplanche (105)
6. Circular saw (321)
7. Transportation (538)
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C o n c l u s i o n s

• Random Forest algorithm appears to be relevant (fast and robust) for the classification of 
acoustic events recorded with DAS.

• Tests on other field sites are under process to demonstrate the efficiency of our Machine 
Learning method on different contexts.

• Different fields of application of this algorithm are possible:  intrusion detection along 
pipelines, in perimeters, seismic event detection and classification (volcanoes, glaciers, 
etc.).

• Tests on data processing in flux for real-time event detection and classification are under 
process.



www.febus-optics.com


