
Machine- learning Inference of  the Inter ior  St ructure of  
Low -mass Exoplanets

For most exoplanets, only 
mass and radius can be 
measured. To understand 
these planets better, we 
need to know their interior 
structure.

Exoplanet  
observat ions With only mass and radius, 

many solutions for the interior 
are possible[2]. To find all 
interior structures, we need to 
run thousands of interior 
models for each given planet. 
This can be computationally 
expensive and time consuming.

Inter ior  st ructures

Mini-
Neptune?

Ocean
world?

Terrestrial
planet?

?

A Mixture Density Network[3]  is similar to a 
conventional Neural Network, but instead of 
single output values it predicts continuous 
parameters in form of a mixture of normal 
distributions.

MDNs work well with inverse problems, where 
each input has multiple output values.

Mixture Densit y Netw orks

- 900 000 synthetic planets with random 
interior structures 

- Each planet has:
- Iron-rich core
- Silicate mantle
- High-pressure ice shell
- cold H/He gas envelope (solar-like)

- Planet mass: 0.01 - 25 MEarth
- 70% used for training
- 30% used for validation

Training data
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1. Compute set of planets with different interior 
structures covering a wide mass and radius 
range

2. Train a neural network to predict all possible 
interior structures based on mass and radius

3. Use network predictions instead of 
time-consuming forward models

4. Test with Solar System planets, where we 
have the most accurate data

Our approach[1]

- 3 hidden layers with 512 neurons each
- Dropout layers before each hidden layer to 

improve robustness of model
- Inputs: Mass, radius, (Love number k2)
- Outputs: Parameters of a Gaussian 

mixture distribution (means, standard 
deviation and weights)

Netw ork architecture

- Predicted distributions align very well with 
distributions from independent modeling of 
planet interiors

- Predicted Earth:
- Predominantly metal-rich/ silicate planet
- Thick ice shell possible
- Small gas envelope possible

- Predicted Neptune:
- Predominantly gaseous with small iron 

core
- Ice and mantle not well constrained

- Prediction time per planet: ~5 ms!

Results
- k2 is a measure of the mass 

concentration in the planet [4, 5]

- Measurable from shape and dynamics of 
the planet [5, 6]

- Using k2 as additional input:
- Interior structures constrained 

significantly better for all layers
- Earth's interior predicted to within a 

few percent of the actual values

Fluid Love number k2

Each subplot shows the predicted layer thickness 
distribution against the actual value from the 
validation data. 
Predictions on the red line are well constrained
- Core and gas layers are fairly well constrained
- Mantle and ice layers can not be constrained well 

Accuracy

Actual value

Predicted 
distribution

Independent 
interior modeling 
approach
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