EGUgsemby 2020 Online | 4-8 May 2020

Temporal and spatial earthquake clustering near Athens, Greece,
revealed through comparison of millennial strain-rates measured with
36Cl cosmogenic exposure dating and decadal GPS strain-rate.
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Introduction

* Clustered earthquake activity causes problems in the identification of the locations of active faults
and associated strain-rates. Moreover, earthquake activity has been suggested to swap across strike
onto neighboring faults to maintain regional strain-rates (e.g. Cowie et al., 2012). It becomes
therefore important to gain observations able to resolve the precise locations of active structures
over different time scales.

* GPS observations are commonly used to map regional strain-rates using decadal observations.
However, debate is centered on whether GPS results (a) apply over multiple seismic cycles, that is,
hundreds to thousands of years, and (b) can resolve the location of active faults if the region
between GPS stations contains multiple active faults, but the seismic activity is clustered on specific
faults within the GPS stations.

* To answer these questions, we performed 3°Cl cosmogenic dating results on three parallel active
faults arranged across strike in the direction of the principal extensional strain in the region of
Athens, central Greece.

* The material shown in this presentation is currently under review in lezzi et al., 2020, in Geology.



Cosmogenic dating of fault planes

Cosmic particles from supernovae are constantly bombarding the Earth’s surface

Crab nebula supernovae remnant

.Mt. Vettore fault scarp, white free face is the cbsejsmic surface rupture following 2016 Central Italy earthquakes (modified after lezzi et al., 2018)




Cosmogenic dating of fault planes

The impact of neutrons and muons with Calcium atoms causes production of 3¢Cl atoms

Crab nebula supernovae remnant
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Cosmogenic dating of fault planes

The concentrations of 3¢Cl can be measured with a particle accelerator
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Location of study area

Attica, central Greece

Extension is accommodated by multiple
parallel low slip-rate faults (0.2-0.5 mm/yr;
Deligiannakis et al. 2018) with little or no
evidence of historical surface-rupturing
earthquakes, although historical and
instrumental earthquakes of M > 6
occurred in the area.

The area presents a set of seven active
faults arranged across-strike, crossed by the
transect across GPS stations 007A-025A.

We sampled three out of the seven faults
across the GPS transect (other faults did
not present sites suitable for cosmogenic
dating).
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Location of study area

Attica, central Greece

The three faults present low slip-rates,
but they are all capable of releasing
earthquakes with M > 6.

The faults are in the proximity of Athens
(~4 million population), with the
southernmost of them (Fili fault) having
its SE tip probably underlying the city.

The definition of the fault slip histories is
fundamental for the evaluation of the
seismic hazard of Athens.
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Milesi fault
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Sampling of fault planes

Samples are collected on a planar fault plane with no post- 15 ka
erosion or sedimentation, with undisturbed upper and lower
slopes, parallel hangingwall and footwall cutoffs.
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Sampling fault planes

Detail of samples
and the trench

Malakasa fault

Samples are collected on a planar
fault plane with no post- 15 ka
erosion or sedimentation, with
undisturbed upper and lower slopes,
parallel hangingwall and footwall

cutoffs.
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Sampling fault planes

Fili fault

Samples are collected on a planar
fault plane with no post- 15 ka
erosion or sedimentation, with
undisturbed upper and lower slopes,

parallel hangingwall and footwall
cutoffs.
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Modelling of cosmogenic 3¢Cl measured on fault planes

Milesi fault Malakasa fault Fili fault
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Modelling is performed using a
Bayesian reversible-jump MCMC
approach (Beck et al., 2018). It iterates
the slip history many thousands of
times, forward modelling expected 3¢Cl
concentrations each time, to search for
the best-fit to the measured 3¢Cl.

The model has been allowed to explore
slip histories for a large time interval to
cope with possible early preservation
of fault scarps.



Results

Combined slip histories of the three studied faults
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Combined slip histories of the three studied faults during the last 15 ka

Earthquake clusters are
alternating on the three parallel
faults.

Cluster on one fault corresponds
to periods of quiescence on
other faults.

The clusters on different faults
do not overlap in time, with
activity migrating rapidly across
strike as a cluster terminates.
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Results

Strain-rates on faults during earthquake clusters vs GPS strain-rate
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* The horizontal strain-rates implied by slip during clusters are a large percentage (50-95%)
of the regional strain-rate if the GPS rate applies over longer time scales.

e These high percentage values imply that only a small number of the active faults on an
across-strike transect contribute to the regional strain-rate at any given time.



Correlation between the age of preserved fault scarps and elevation

The retrieved slip histories
highlight a difference in the ages
since the three fault scarps started
to be preserved: older fault scarps
are located at lower elevations,
younger fault scarps are located at
higher elevations.

Our interpretation is that, during
the last glaciation, erosion related
to frost-shattering increased with
elevation. This explains why the
lower elevation sites preserve a
longer portion of the scarp
history.
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Discussion

Earthquake clusters migrate both into the
hangingwall and footwall of faults spaced at least
5-20 km across strike.

Clusters begin on faults within a few hundred
years of the time when activity ceases on faults
across strike.

Clusters last several millennia.

Clusters involve 2.0-3.5 meters of slip which is
78-100% of the slip measured over 15 millennia.

Intense clustering implies a factor of x3.75-4.23
difference between slip-rates and earthquake
recurrence intervals within clusters and
compared to that calculated since 15 ka.

a) Modelled slip histories within the last 15 ka
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b) Locations of sampled sites relative to topography and the 025A-007A GPS transect
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Discussion

a) Modelled slip histories within the last 15 ka
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Conclusions

Faults near Athens, although characterized by low slip-rates, are active and capable of
surface-rupture during earthquakes, and given the uncertainty of whether clusters and anti-
clusters are ongoing or about to end, the identification of clustered fault activity is vital for
probabilistic seismic hazard assessments for the city.

The combination of palaeoseismological data, such as 3°Cl dating, and geodetic data is a
powerful tool to study continental deformation and seismic hazard because it combines the

long and short-term views of the deformation.

We advocate dense GPS networks with stations on every fault block combined with InSAR
observations that provide continuous spatial coverage of strain accumulation if the precise
location and width of actively deforming zones is required, alongside palaeoseismology
covering many millennia, for example 36Cl studies, where possible.



Thank you!

Please contact francesco.iezzi.15@ucl.ac.uk or @Francelezzi on Twitter
if you want to know more!
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