

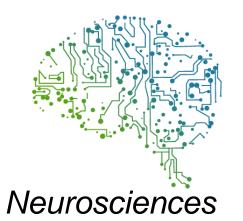
Boosting performance in Machine Learning of Turbulent and Geophysical Flows via scale separation

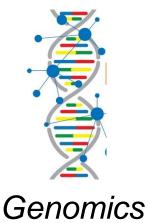
Davide Faranda, Mathieu Vrac, Pascal Yiou, Flavio Maria Emanuele Pons, Adnane Hamid, Giulia Carella, Cedric Gacial Ngoungue Langue, Soulivanh Thao, and Valerie Gautard

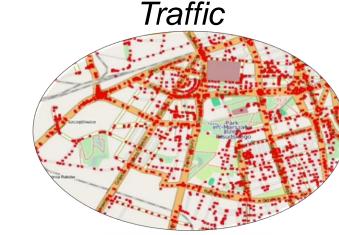
EGU2020-7569

EGU2020-7569

MACHINE LEARNING IN SCIENCE

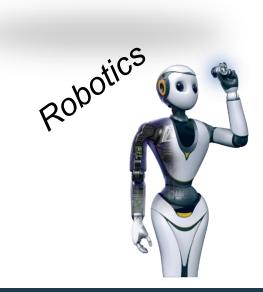




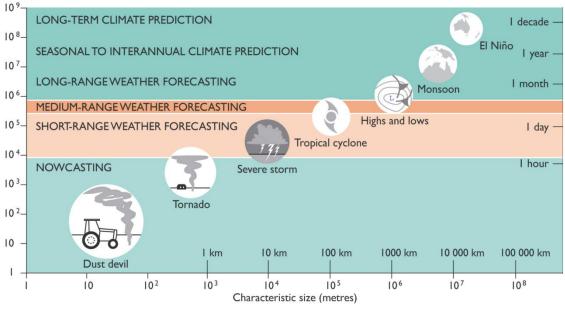


-Complex Systems

- -Multiple Spatial and time Scales
- -Large Availability of Training Data
- -Missing Equations of State



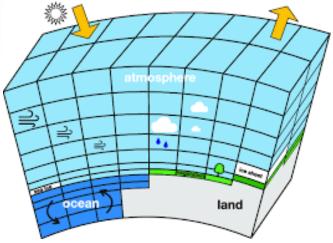
MACHINE LEARNING IN CLIMATE SCIENCE



-Complex Systems

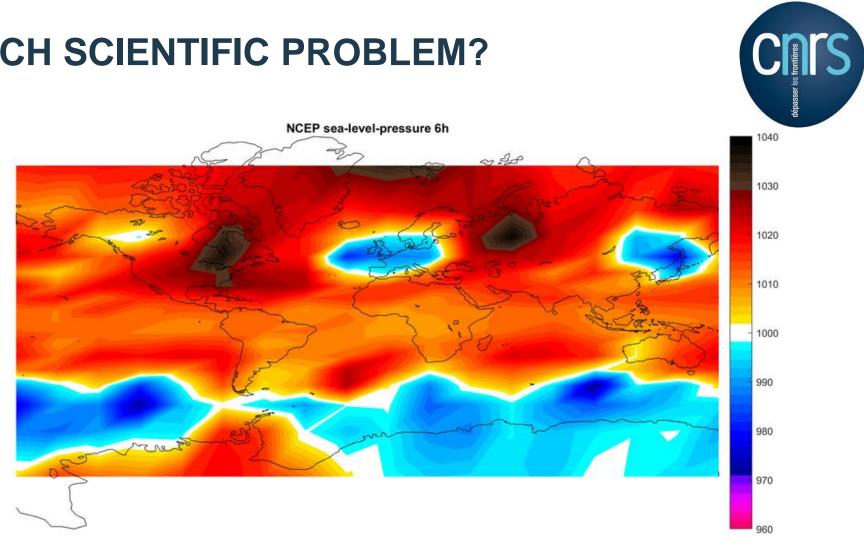
Seconds

- -Multiple Spatial and time Scales
- -Large Availability of Training Data

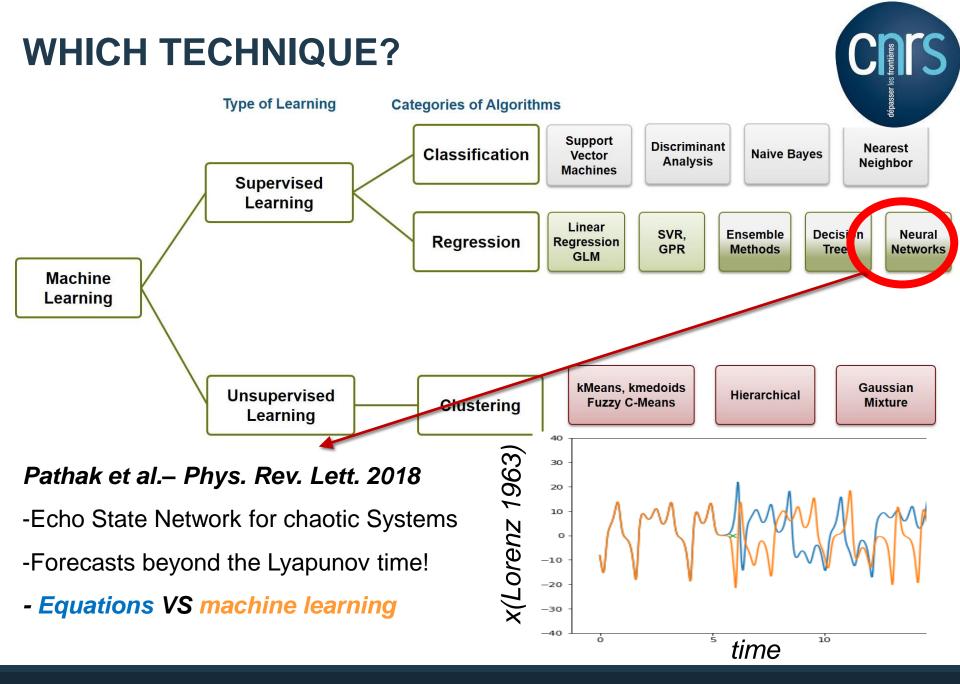


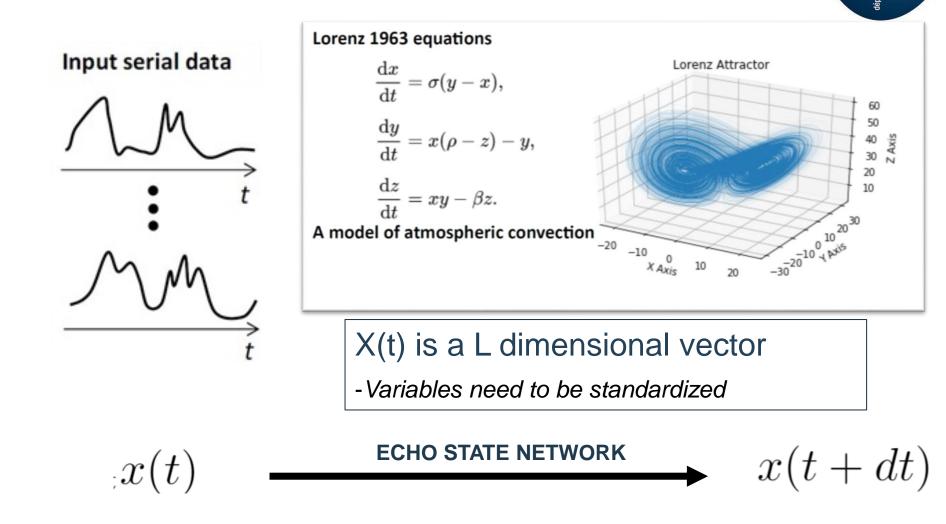
-Missing Equations of State (we have Navier-Stokes eqs.)

WHICH SCIENTIFIC PROBLEM?

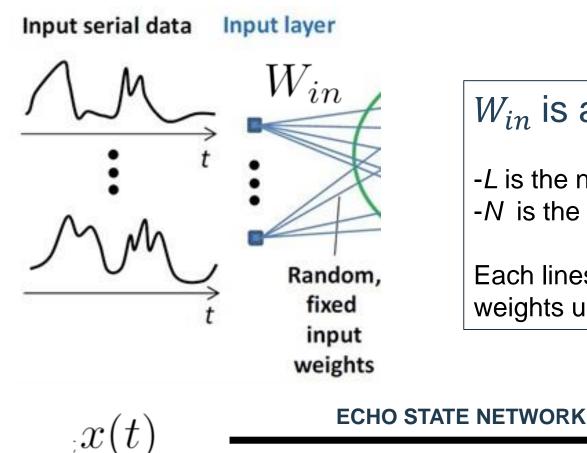


Task: forecast and generate a sea-level pressure forecast and its long term statistics to mimic that of the NCEP reanalysis.





EGU2020-7569

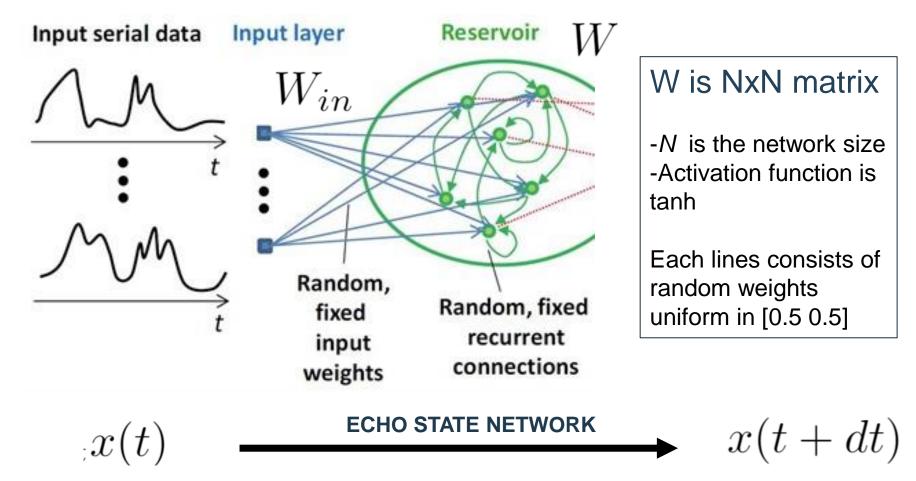


W_{in} is a matrix LxN

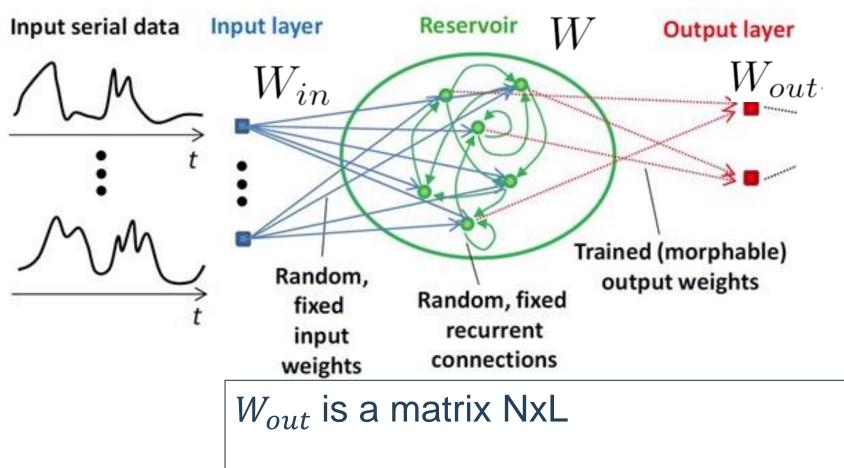
-L is the number of variables.-N is the network size

Each lines consists of random weights uniform in [0.5 0.5]

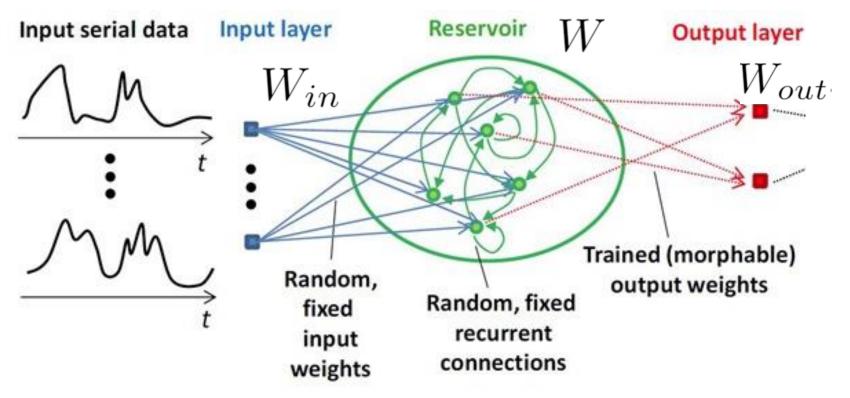
x(t+dt)



EGU2020-7569



-Optimized during the training with a **Ridge regression** so that the output matches x(t+dt)

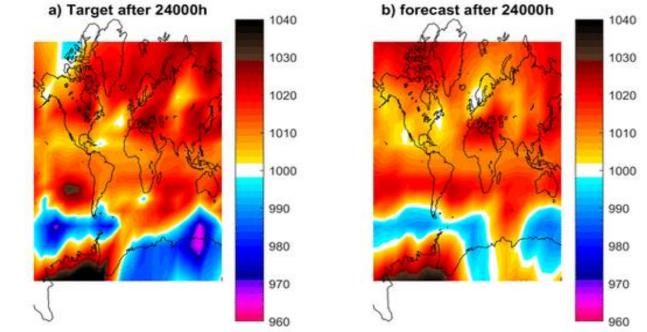


$$x(t+dt) = \tanh(Wx(t) + W_{in}W_{out}x(t))$$

FIRST TRIALS ON SEA-LEVEL PRESSURE

Network Size= 200 Neurons, Learning Time = 10 years Forecast Length = 10 years

At long time, the dynamics is stuck, it does not look realistic anymore (independently on the chosen parameters)



Similar results: Scher & Messori (2018,2019), Dueben & Bauer (2018)

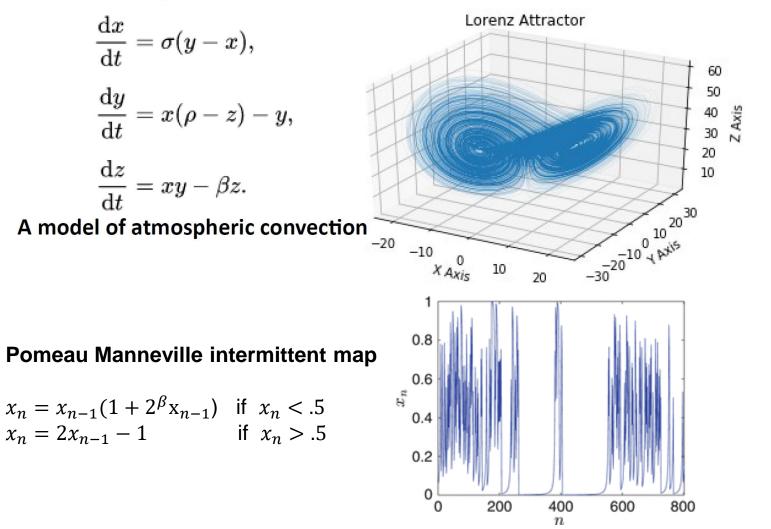
=> We need to take one step back to assess what is wrong

EGU2020-7569

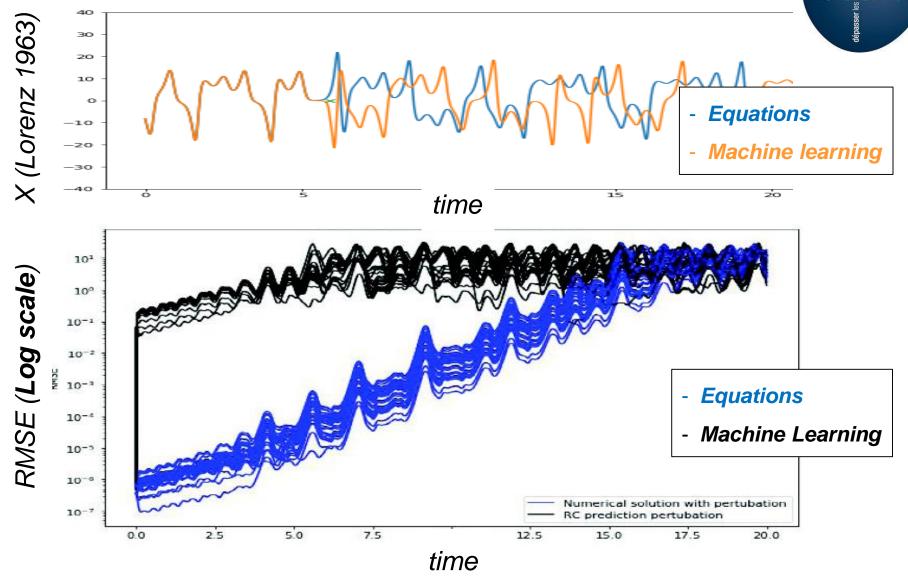
CIERCIS

TEST SYSTEMS

Lorenz 1963 equations

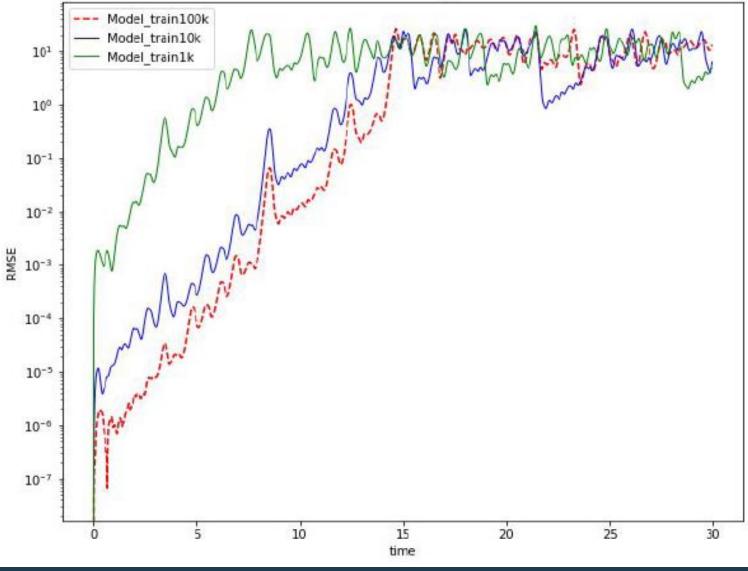


DANGER #1: LEARNING TIME



EGU2020-7569

DANGER #1: LEARNING TIME



14/23 Machine Learning for Geophysical Flows

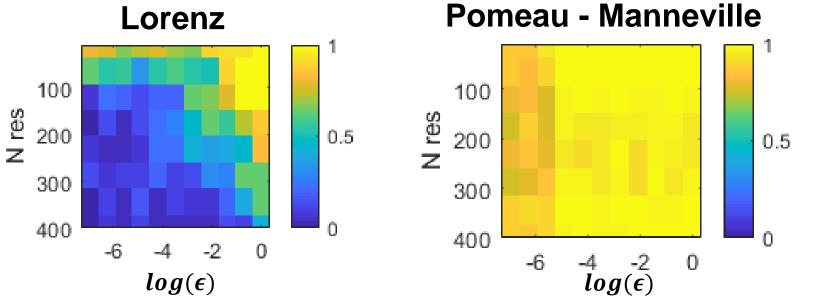
EGU2020-7569

DANGER #2 NOISE & INTERMITTENCY

Additive noise to the Lorenz 1963 equations & Pomeau-Manneville Intermittent map:

$$x(t+dt) = f(x(t)) + \epsilon\xi(t)$$

where $\xi(t)$ is a random variable uniform in [-0.5 0.5]



Percentage of failure in reproducing the attractor

(0 means never fail, 1 means always fail)

POSSIBLE SOLUTION: SCALE SEPARATION

1) Filter the noise

There are countless methods, but we use the simplest possible one:

Moving Average filter with window size: $ws \ll \tau$ where τ is the Lyapunov time

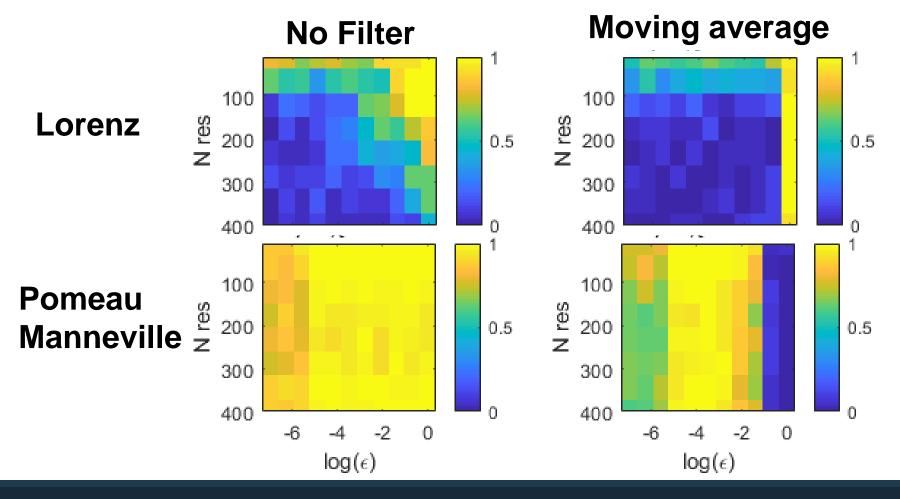
2) Apply Echo State Network to the filtered system only

3) Add back the residual to the forecast

IMPROVEMENTS FOR LOW D SYSTEMS

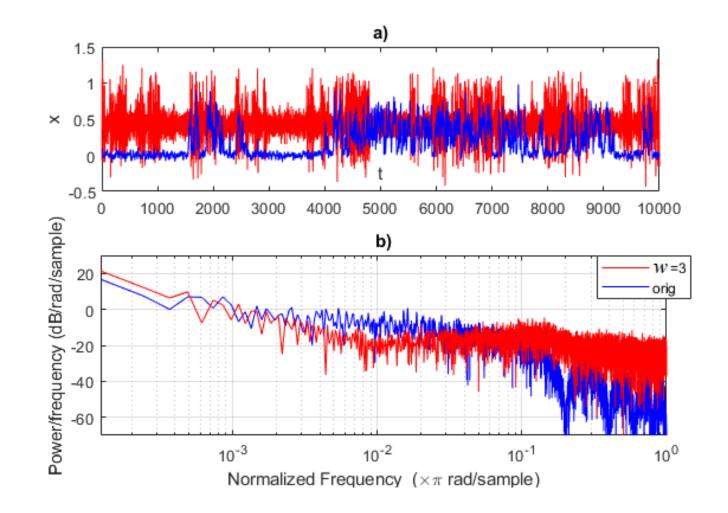
Percentage of failure in reproducing the attractor

(0 means never fail, 1 means always fail)



IMPROVEMENTS FOR LOW D SYSTEMS

Pomeau Manneville

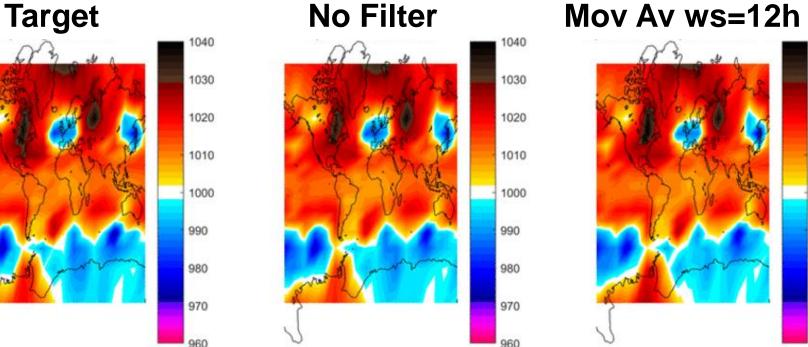


EGU2020-7569

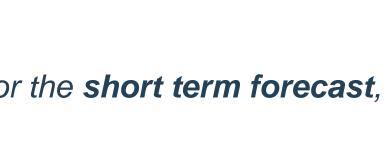
davide.faranda@cea.fr

TEST ON NCEP SEA-LEVEL PRESSURE

Network Size= 200 Neurons, Learning Time = 10 years Forecast Length = 10 years



For the **short term forecast**, there is no much improvement



1040

1030

1020

1010

1000

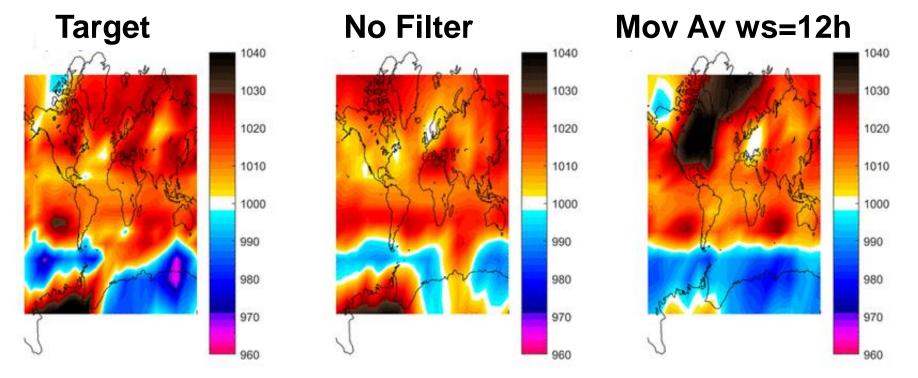
990

980

19/23 Machine Learning for Geophysical Flows EGU2020-7569

TEST ON NCEP SEA-LEVEL PRESSURE

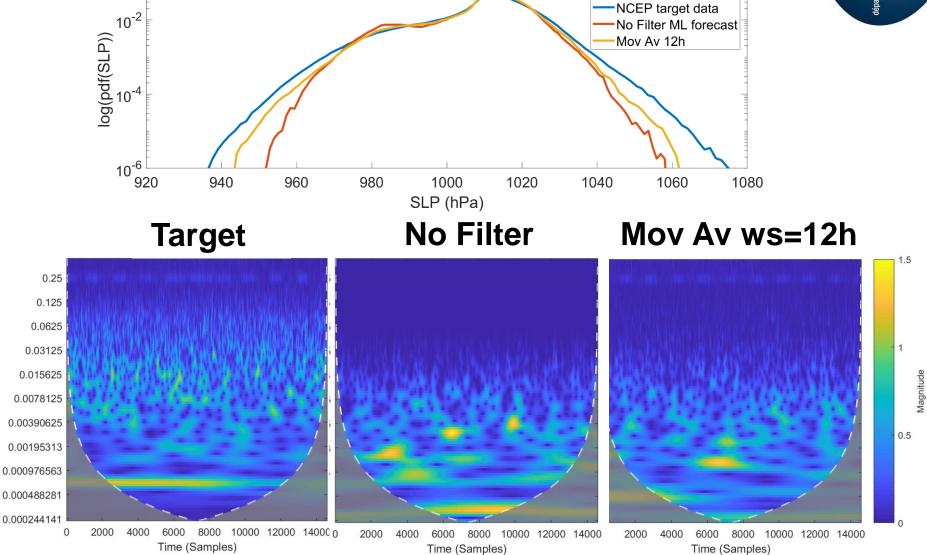
Network Size= 200 Neurons, Learning Time = 10 years Forecast Length = 10 years



If we look at the **long term behavior**, it is evident that the simulation with moving average is more realistic

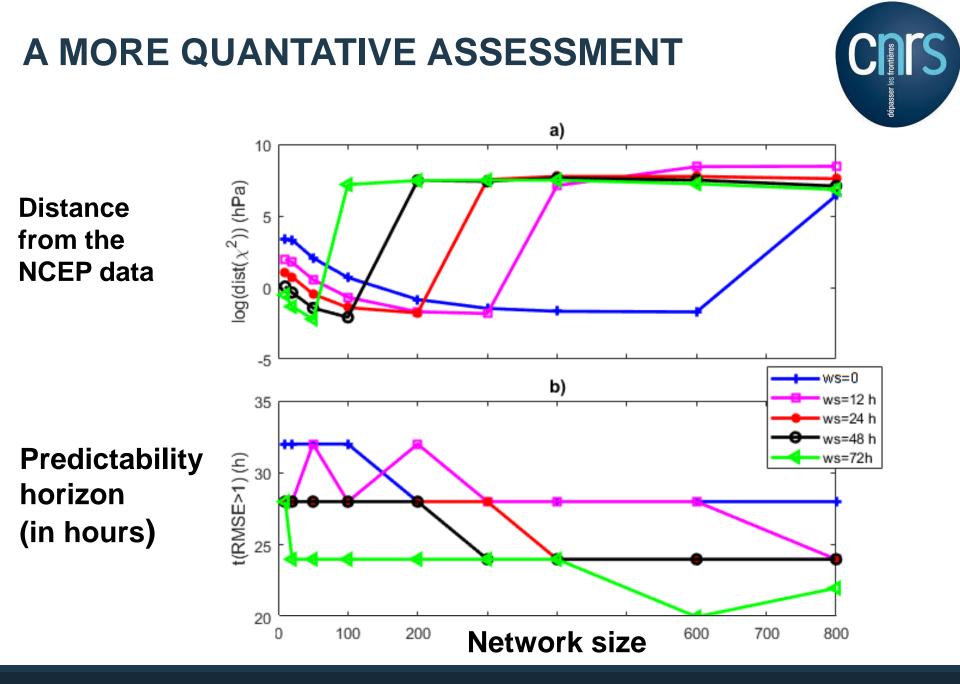
EGU2020-7569

SPACE TIME STATISTICS



Normalized Frequency (cycles/sample)

EGU2020-7569



EGU2020-7569

CONCLUSIONS

- 1) It is not straightforward to apply Machine Learning techniques to geophysical flows: turbulence and intermittency worsen the performance
- 2) Partial predictability can be recovered by separating large from small scale dynamics (e.g moving average, PCA, wavelets)
- 3) Possible developments will largely benefit from interactions with the stochastic dynamical systems community

REFERENCES

[1] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, Model free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach, Physical review letters 120, 024102 (2018)

[2] S. Scher and G. Messori, Weather and climate forecasting with neural networks: using general circulation models (gcms) with different complexity as a study ground, Geoscientific Model Development 12, 2797 (2019)

[3] D. **Faranda**, M. Vrac, P. Yiou, F.M.E. Pons, A. Hamid, , G. Carella, C.G. Ngoungue Langue, S. Thao, V Gautard. Boosting performance in Machine Learning of Turbulent and Geophysical Flows via scale separation. Phys Rev Letters (in review) (2019)

Contact: <u>davide.faranda@cea.fr</u>

Jhank You for the Attention