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MACHINE LEARNING IN SCIENCE
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GenomicsNeurosciences

Traffic

-Complex Systems

-Multiple Spatial and time Scales

-Large Availability of Training Data

-Missing Equations of State



MACHINE LEARNING IN CLIMATE SCIENCE
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-Complex Systems

-Multiple Spatial and time Scales

-Large Availability of Training Data

-Missing Equations of State (we have Navier-Stokes eqs.)



WHICH SCIENTIFIC PROBLEM?
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Task: forecast and generate a sea-level pressure forecast and its long

term statistics to mimic that of the NCEP reanalysis.



WHICH TECHNIQUE?
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Pathak et al.– Phys. Rev. Lett. 2018

-Echo State Network for chaotic Systems

-Forecasts beyond the Lyapunov time!

- Equations VS machine learning
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ECHO STATE NETWORKS + RECURRENCE
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ECHO STATE NETWORK

X(t) is a L dimensional vector

-Variables need to be standardized



ECHO STATE NETWORKS + RECURRENCE
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ECHO STATE NETWORK

𝑊𝑖𝑛 is a matrix LxN

-L is the number of variables. 

-N is the network size

Each lines consists of random

weights uniform in [0.5 0.5]



ECHO STATE NETWORKS + RECURRENCE

8/23 Machine Learning for Geophysical Flows EGU2020-7569 davide.faranda@cea.fr

ECHO STATE NETWORK

W is NxN matrix  

-N is the network size

-Activation function is

tanh

Each lines consists of 

random weights

uniform in [0.5 0.5]



ECHO STATE NETWORKS + RECURRENCE
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𝑊𝑜𝑢𝑡 is a matrix NxL

-Optimized during the training with a Ridge regression

so that the output matches x(t+dt)



ECHO STATE NETWORKS + RECURRENCE
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FIRST TRIALS ON SEA-LEVEL PRESSURE
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Network Size= 200 Neurons,  Learning Time = 10 years  Forecast Length = 10 years

At long time, the 

dynamics is stuck,

it does not look 

realistic anymore

(independently on 

the chosen

parameters)

Similar results: Scher & Messori (2018,2019), Dueben & Bauer (2018)

=> We need to take one step back to assess what is wrong
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TEST SYSTEMS

Pomeau Manneville intermittent map

𝑥𝑛 = 𝑥𝑛−1(1 + 2𝛽x𝑛−1)   if  𝑥𝑛 < .5
𝑥𝑛 = 2𝑥𝑛−1 − 1 if  𝑥𝑛 > .5
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DANGER #1: LEARNING TIME
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- Equations

- Machine learning

- Equations

- Machine Learning
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DANGER #1: LEARNING TIME
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DANGER #2 NOISE & INTERMITTENCY

Percentage of failure in reproducing the attractor

(0 means never fail,   1 means always fail) 

Additive noise to the Lorenz 1963 equations & Pomeau-
Manneville Intermittent map:

𝒙 𝒕 + 𝒅𝒕 = 𝒇 𝒙 𝒕 + 𝝐𝝃(𝒕)

where 𝜉(𝑡) is a random variable uniform in [-0.5 0.5]

𝒍𝒐𝒈(𝝐) 𝒍𝒐𝒈(𝝐)

Pomeau - MannevilleLorenz
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POSSIBLE SOLUTION: SCALE SEPARATION

1) Filter the noise

2) Apply Echo State Network to the filtered system only

3) Add back the residual to the forecast

There are countless methods, but we use the 

simplest possible one: 

Moving Average filter with window size: 

𝑤𝑠 ≪ 𝜏
where 𝜏 is the Lyapunov time
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IMPROVEMENTS FOR LOW D SYSTEMS

Lorenz

Pomeau

Manneville

No Filter Moving average

Percentage of failure in reproducing the attractor

(0 means never fail,   1 means always fail) 
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IMPROVEMENTS FOR LOW D SYSTEMS

Pomeau

Manneville
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TEST ON NCEP SEA-LEVEL PRESSURE

No FilterTarget Mov Av ws=12h

For the short term forecast, there is no much improvement

Network Size= 200 Neurons,  Learning Time = 10 years  Forecast Length = 10 years
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TEST ON NCEP SEA-LEVEL PRESSURE

No FilterTarget Mov Av ws=12h

If we look at the long term behavior, it is evident that the 

simulation with moving average is more realistic

Network Size= 200 Neurons,  Learning Time = 10 years  Forecast Length = 10 years
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SPACE TIME STATISTICS

Target No Filter Mov Av ws=12h
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A MORE QUANTATIVE ASSESSMENT 

Distance 

from the 

NCEP data

Predictability 

horizon

(in hours)

Network size
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CONCLUSIONS

1) It is not straightforward to apply Machine Learning
techniques to geophysical flows: turbulence and
intermittency worsen the performance

2) Partial predictability can be recovered by separating
large from small scale dynamics (e.g moving average,
PCA, wavelets)

3) Possible developments will largely benefit from
interactions with the stochastic dynamical systems
community
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