
Introduction

The recent experimental study [1], [2] identify ‘‘bag
breakup’’ fragmentation as the dominant mechanism by
which spume droplets are generated at hurricane wind
speeds. These droplets can significantly affect the
exchanging processes in the air-ocean boundary layer. In
order to estimate spray-mediated heat, momentum and
mass fluxes we need not only reliable experimental data,
but a theoretical model of this process.

The “bag-breakup” fragmentation is a strongly non-
linear process, and we focus only on its first stage which
includes the small-scale elevation of the water surface.

Our model of the bag’s initiation is based on a weak
nonlinear interaction of a longitudinal surface wave and
two oblique waves propagating at equal and opposite
angles to the flow as it was done in [3], [4].

Model

Let's consider the piecewise velocity
profile as

ത𝑢 𝑧 = ቊ
𝑧 −1 ≤ 𝑧 ≤ 0
−1 −∞ ≤ 𝑧 ≤ −1

,

which was along OX axis. All quantities
are made dimensionless relative to the
stream velocity 𝑽, density 𝝆 of the fluid
and the thickness 𝜹 of the turbulent
boundary layer.
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First order
We defined velocity perturbation, using the perturbation steam function 

𝑣𝑗𝑥𝑗
= 𝜕𝑧𝛹𝑗 𝑣𝑗𝑧

= −𝜕𝑥𝑗𝛹𝑗 = −𝑖𝑘𝑗𝛹𝑗
We seek a uniform expansion by using the method of multiple scales in the form

𝜓𝑗 Ԧ𝑟, 𝑡 = 휀𝜓𝑗
1 Ԧ𝑟, 𝑡, 휀𝑡, … + 휀2𝜓𝑗

2 Ԧ𝑟, 𝑡, 휀𝑡, … + ⋯

First order of the method of multiple scales gives us that all waves propagate 
independently, and we obtain a homogeneous system of algebraic equations for each 
wave in the following form
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𝜔𝑗 + cos 𝛼𝑗 𝑒𝑘𝑗 − 𝐺 + Σ𝑘𝑗
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1
= 0

−Ф2+
(1)

𝑗
𝜔𝑗 + 𝑘𝑗 cos 𝛼𝑗 +Ф1𝑤−
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𝑗
𝜔𝑗 + (1 + 𝑘𝑗) cos 𝛼𝑗 = 0

where 𝑗 = 1,2,3.

It can be rewritten as 𝐿(𝜔𝑗 , 𝑘𝑗 , 𝛼𝑗)𝑿𝑗
(1)

= 0

For a nontrivial solutions, the determinants of the coefficient matrices must be zero; 

that is det 𝐿(𝜔𝑗 , 𝑘𝑗 , 𝛼𝑗) = 𝒟 𝜔𝑗 , 𝑘𝑗 , 𝛼𝑗 = 0 – dispersion relation for each of the waves.
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Considering the nonlinearity of the boundary conditions, we get an inhomogeneous system of 

equations for each of the waves in the form: 𝐿 𝜔𝑗, 𝑘𝑗, 𝛼𝑗 𝑿𝑗
2
= 𝒃𝑤𝑗 + 𝜕𝜏𝐴𝑗 𝜏 𝒃𝜏𝑗 + 𝒃𝑛𝑙𝑗

Their homogeneous parts will have a nontrivial solution if their right-hand sides are orthogonal to the 
solution of the adjoint homogeneous problem.

It could be shown that 𝒃𝜏𝑗, 𝒖𝑗 ∝
𝜕𝒟 𝜔𝑗 ,𝑘𝑗,𝛼𝑗

𝜕𝜔𝑗
and 𝒃𝑤𝑗, 𝒖𝑗 = 1−

0
(𝑊𝑗

′′ −𝑊𝑗)𝜙𝑗
1
(𝑧) 𝑑𝑧

The irrotational term 𝑊𝑗(𝑧) is determined from the equations of motion of the second order in the 
inviscid limit. However, in this case, the integral will have a high-order pole in the critical layer at 𝑧 =
𝑧0 (−1 ≤ 𝑧0 ≤ 0). The solution of the viscous problem for a purely shear flow is described in detail 
in [4] and all mathematical calculations for present study almost coincide with [4]. The evaluation of 

the last term 𝒃𝑤𝑗, 𝒖𝑗 is quite straightforward. That resulted in the equations describing the 

modulation of amplitudes  𝐴1, 𝐴3 as follow:

𝑑𝐴1

𝑑𝑡
= Λ1𝐴3𝐴1

∗

𝑑𝐴3

𝑑𝑡
= Λ3𝐴1

2

Numerical simulation of the receiving system demonstrates explosive growth within finite time 𝑡𝑖𝑛𝑠𝑡. 

The dynamics of the simulated structure is similar to the initial stage of the “bag-breakup” 
phenomenon. To compare the experimental data and our model, we define the transverse scale of 

the structure formed by three surface waves as 𝐿⊥ =
2𝜋𝛿

𝑘 sin 𝛼
=

4𝜋𝛿

𝑘3 tan 𝛼
, where we come back to 

dimensional variables. 
Numerical calculations showed the transverse scale of the most unstable triads 𝐿⊥ and its time of 
growth 𝑡𝑖𝑛𝑠𝑡 have following dependencies on the friction velocity

𝐿⊥ ∝ 𝑢∗
−1.23 𝑡𝑖𝑛𝑠𝑡 ∝ 𝑢∗

−1.89

As it was reported in [1] the experimental data give us the following dependencies for size of bags 
and their lifetime 

< 𝑅1 >∝ 𝑢∗
−1 < 𝜏 > ∝ 𝑢∗

−2

Dispersion relations
We assumed that the amplitudes of oblique waves are the same. For effective

interaction of these waves, the synchronism conditions 𝑘3 = 2𝑘1 cos 𝛼, 𝑅𝑒 𝜔3 𝑘3 =
𝑅𝑒 2𝜔1(𝑘1) must be satisfied. Analysis of the dispersion relations shows that these
conditions can be fulfilled at certain values of velocity and angle.
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Outlook
In the future research, we will continue develop this model and will focus on more thorough
comparison with the “bag-breakup” instability.

We assume that the interaction occurs between three
waves: two oblique, which propagate at the same angle to
the wind flow and one longitudinal wave.
Assuming the fluid incompressible and inviscid, the
components of the velocity perturbation should satisfy the
non-linear equations of motion:

𝜕𝑡𝑣𝑥 + 𝑢0𝜕𝑥𝑣𝑥 + 𝑣𝑧𝑢0
′ +

1

𝜌
𝜕𝑥𝑝 = − Ԧ𝑣, 𝛻 𝑣𝑥

𝜕𝑡𝑣𝑧 + 𝑢0𝜕𝑥𝑣𝑧 +
1

𝜌
𝜕𝑧𝑝 = − Ԧ𝑣, 𝛻 𝑣𝑧

with non-linear boundary conditions:
1) Dynamic boundary conditions (taking into account
capillary effect and gravity)

− ቚ𝑝
𝑧=𝜂1

+ 𝐺𝜂 + Σ∆⊥𝜂 = 0

ቚ𝑝
𝑧= −1+𝜂2

− ቚ𝑝
𝑧=−1−𝜂2

= 0

2) Kinematic boundary conditions at 𝑧0 = −0;−1 ± 0

𝜕𝑡𝜂 + ( ቚԦ𝑣⊥
𝑧=𝑧0+𝜂

, 𝛻⊥)𝜂 = ቚ𝑣𝑧
𝑧=𝑧0+𝜂

3) Decay at infinity
𝑣, 𝑣′ → 0(𝑧 → −∞)

𝒟 𝜔𝑗 , 𝑘𝑗 , 𝛼𝑗 = 𝜔𝑗
2 cos 𝛼𝑗 cosh 𝑘𝑗 − 𝜔𝑗+𝑘𝑗 cos 𝛼𝑗 𝑒

𝑘𝑗

cos 𝛼𝑗 sinh 𝑘𝑗− 𝜔𝑗+𝑘𝑗 cos 𝛼𝑗 𝑒
𝑘𝑗
+ 𝜔𝑗 cos 𝛼𝑗 − (𝐺 + Σ𝑘𝑗

2)𝑘𝑗 = 0

Setting:

𝑢∗ = 1.0 𝑚/𝑠 , 𝛿 = 0.83 𝑚𝑚, 𝛼 = 65°

Second order
To derive the three-wave interaction system, it is necessary to take into account

second order terms, but the term 𝜓𝑗
2 , unlike 𝜓𝑗

1 , contains not only an 

irrotational part, but a rotational one. As a result, the stream function can be 
written in the following way

𝜓𝑗 Ԧ𝑟, 𝑡 = 휀𝐴𝑗 휀𝑡 𝜙𝑗
1
(𝑧) exp 𝑖𝑘𝑗𝑥𝑗 − 𝑖𝜔𝑗𝑡 + 휀2(𝜙𝑗

2
(𝑧) + 𝑖

𝑊𝑗(𝑧)

𝑘𝑗
) exp 𝑖𝑘𝑗𝑥𝑗 − 𝑖𝜔𝑗𝑡


