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Introduction
For an ongoing project to study the transport pro‐
cesses within a volcanic conduit, including crystalliz‐
ation and degassing, we are coupling a thermody‐
namicsmodel (TD) to a computational fluid dynam‐
ics (CFD)model allowing for a fully thermo‐ and fluid
dynamically consistent simulation.
Despite the wide range of TD model families avail‐
able, e. g. MELTS (Ghiorso and Sack, 1995), THER‐
MOCALC (Holland and Powell, 2011), PERPLE_X (Con‐
nolly, 2005), the need to re‐implement a TD model
to suit our cause is become apparent for the reas‐
ons stated below. Here, we can only give a short
account of our approach to one of the problems en‐
countered: The characterization of miscibility gaps.

Why re-invent the wheel?
Given all the established thermodynamics software
and toolboxes, we still decided to endeavour re‐
implementing one of them for two reasons:
I Ensuring computing performance

The interface between separate TD and CFD
programs forms a severe bottleneck. Direct in‐
tegration and compilation of TD into the CFD
code is necessary for acceptable run‐times.

I Learning how to use TD model properly
Using a complex TDmodel requires knowledge
of its range of applicability to stay within it, or
to know when it is safe to transgress those lim‐
its (e. g. a mixing‐model being valid for what
bulk compositions). This information is often
not obvious at first glance.

On gainingmore insight, a third requirement was ad‐
ded to the list and soon became paramount:
I Ensuring numerical consistency

Fully coupling a TD and a CFD model creates a
feedback loop where the output of one model
at one time‐step is the other’s input at the next
and vice versa. This amplifies inconsistencies
resulting solely from the numerical implement‐
ation of a physically consistent TD model that
would be insignificant under normal operation.

The thermodynamics model
TD models solve a system’s equation of state (EOS)
given as a thermodynamic potential, e. g. the Gibbs
free energy G, at a given state (pressure, temper‐
ature, bulk composition, PTX) under the assump‐
tion of equilibrium for the stable phase composition.
They consist of three parts that are, at least in prin‐
ciple, independent from each other:
I The so‐called database, i. e. the EOSs of the

pure end‐member phases,
I themixing models (also activity‒composition)

of how the singles phases interact, and
I a solver to find the composition at equilibrium

under given PTX conditions.
We chose to re‐implement the TD model of Holland
and Powell (2011) using their database and mixing
models but writing a new solver in Fortran to be
compatible with our CFD program (Flow3D).

Figure 1: Topography of the Gibbs energy of mixing
Gmix (eq. 1, on the right) for a fictive ternary system
AlIAlIIO3, MgISiIIO3, FeISiIIO3 with mixing on two but
indistinguishable sites. It shows three local maxima,
already suggesting miscibility gaps, and three local
minima close to the three end‐members.
Parameters: T = 1474 K; Gi = 0, δGi = 8.495, WAM = 8,
WAF = 6, WMF = 4 kJ/mol; ai = [1.0, 1.1, 1.4], and
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Figure 2: Miscibility landscape. (see text on the right)
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The mixing model
The full expression for the Gibbs energy of mixing
Gmix of an n‐phase system based on the Holland and
Powell (2011) system is:

Gmix =

n∑
i=1

xi

(
Gi + δGi +

IMOS︷ ︸︸ ︷
RT ln

ns∏
j=1

( n∑
k=1

Sjk xk

)Sji

)

+
2∑n

k=1akxk

n−1∑
i=1

n∑
j>i

xixj
aiaj

ai + aj
Wij︸ ︷︷ ︸

NIM

(1)

xi is the normalized (Σxi = 1, xi ≥ 0) molar amount of
phase i, and Gi its pure end‐member Gibbs energy.
δGi summarizes all constant corrections to this while
inmixture. Also any parametermay depend on pres‐
sure P and temperature T. R is the gas constant.
Idealmixing on sites (IMOS) is described by anns×n
matrix S, where Sji ≥ 0 is the site occupancy of site j
by end‐member i.
Non‐ideal mixing (NIM) is described within the
asymmetric formalism (Holland and Powell, 2003)
by asymmetry parameters ai ≥ 0 and pairwise inter‐
action energies Wij between phases i and j.
For S = 1 the identity matrix and all Wij = 0, (1) re‐
duces to the well‐known simple ideal mixing equa‐
tion: Gmix =

∑n
i=1 xi (Gi + RT ln xi).

Miscibility gaps
Miscibility gaps can occur if, for a given compos‐
ition x, there is a linear composition of two or
more different compositions Σ(bj x′

j) = x for which
Σ[bj Gmix(x′

j)] ≤Gmix(x). Spontaneous de‐mixing into
this combination of phases will occur, when x is
within the spinodals of the system. Within the
binodals, the composition is metastable.
Available TD programs deal with this by using a pri‐
ori knowledge of the behaviour of themixingmodel,
limiting their applicability to cases, where such is
available. We are working on a semi‐analytic al‐
gorithm to characterize a mixing model in terms of
its miscibility gaps.
Results for the model of Fig. 1 are shown in Fig. 2.
Checking for the spinodals can be done analytic‐
ally by checking the sign of the smallest eigenvalue
of ∂2Gmix(x)/∂x2. As the miscibility landscape is
completely determined by the second derivatives
of Gmix, it can be transformed by linear functions
without changing its character. Making ∇G(x) = 0
locally that way is sufficient to determine whether x
lies on the lower convex hull (LCH) of Gmix and thus
is absolutely stable. In similar fashion, up to n sup‐
ports of the LCH (black circles in Fig. 2) can be found.
Compositions within them are known to de‐mix into
those points.
Our algorithm is currently being optimized and val‐
idated, and can be expected to be published in its
entirety in due course.
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