A multi-model assessment of sub-monthly polar motion and
the associated ocean bottom pressure variability
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Svynopsis Comparison to GRACE Ocean self-attraction and loading
Comparisons of geophysical fluid excitations against space- We use daily ITSG-Grace2018 solutions (Kvas et al. 2019)

geodetic observations of sub-monthly polar motion typically based on Kalman smoothing with appropriate corrections 50°N G, 6

reveal residuals with peaks as large as 1-2 cm when projected  (e.g., degree 1). Dynamic bottom pressure fields from all

onto the Earth's surface (Figure 1). A possible source for these  models are expanded into spherical harmonics up to degree 30°NF

discrepancies are imperfections in the hydrodynamic models 40 and discretized on a 1° grid for the comparison (Figure 2).
used to derive the required ocean excitation functions. To
guide future model improvements, we present a systematic
assessment of the oceanic component of sub-monthly polar
motion based on simulations (2007-2008) with three global
time-stepping models that are forced by the same
atmospheric data but considerably differ in their numerical 0°
setup and physical parameterizations. A specific question we

want to answer is whether daily GRACE solutions - which

resolve the broad scales of ocean bottom pressure variability 60°S
- can help identify the most credible model for studies of

short-term polar motion.
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Fig. 3: Standard deviation in dynamic bottom pressure (cm) due to the SAL
term (periods T < 60 days). Results were obtained from two DEBOT
simulations with and without the SAL term.

Findings & Outlook

© The comparison with GRACE is not conclusive yet. Both
MPIOM and DEBOT show relatively small bottom pressure
residuals (Figure 2) but DEBOT outperforms MPIOM in

terms of polar motion (Table 1 and Figure 4)
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© Oceanic SAL effects on sub-monthly time scales (Figure 3)
may be important for de-aliasing considerations but have
little impact on geophysical excitation functions
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® Inclusion of pressure loading in the MITgcm presently

60°S
degrades the model’s performance

Fig. 1: Polar motion x residuals (cm), obtained by subtracting atmosphere
and ocean contributions from the IERS C04 series (high-pass at 30 days). The

grey stripe indicates the 3o level represented by the C04 formal errors. Next up:
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(three model versions) from IERS C04-based geodetic excitation functions.

Fig. 4: Coherence spectra between geodetic and geophysical excitation in (a)
x and (b) y direction. Each oceanic excitation function was superimposed on
the same atmospheric series from ERA-Interim.
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