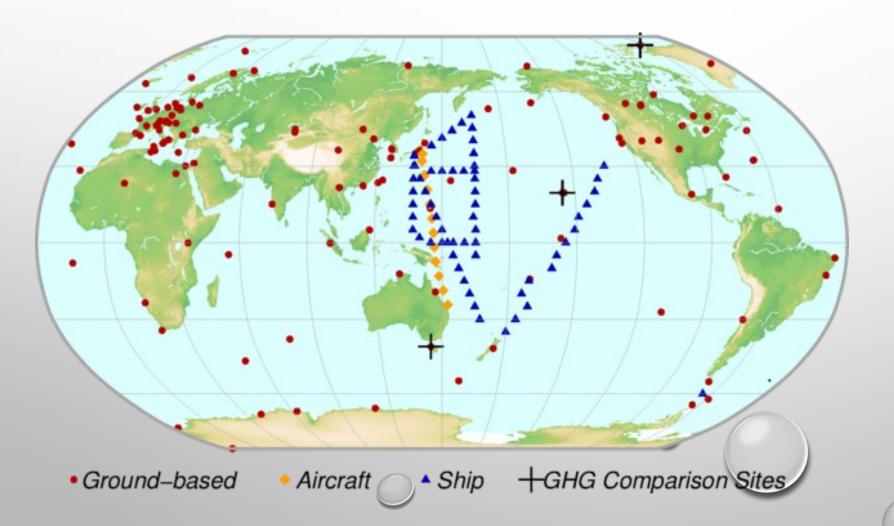


Oksana A. Tarasova (#), Alex Vermeulen, Jocelyn Turnbull, Yousuke Sawa, Ed Dlugokencky (#) WMO, Geneva, Switzerland (otarasova@wmo.int)



Oksana A. Tarasova (#), Alex Vermeulen, Jocelyn Turnbull, Yousuke Sawa, Ed Dlugokencky (#) WMO, Geneva, Switzerland (otarasova@wmo.int)

CO₂ observational network

Only the data obtained following prescribed QA/AC procedures are used for global analysis

Results of global analysis

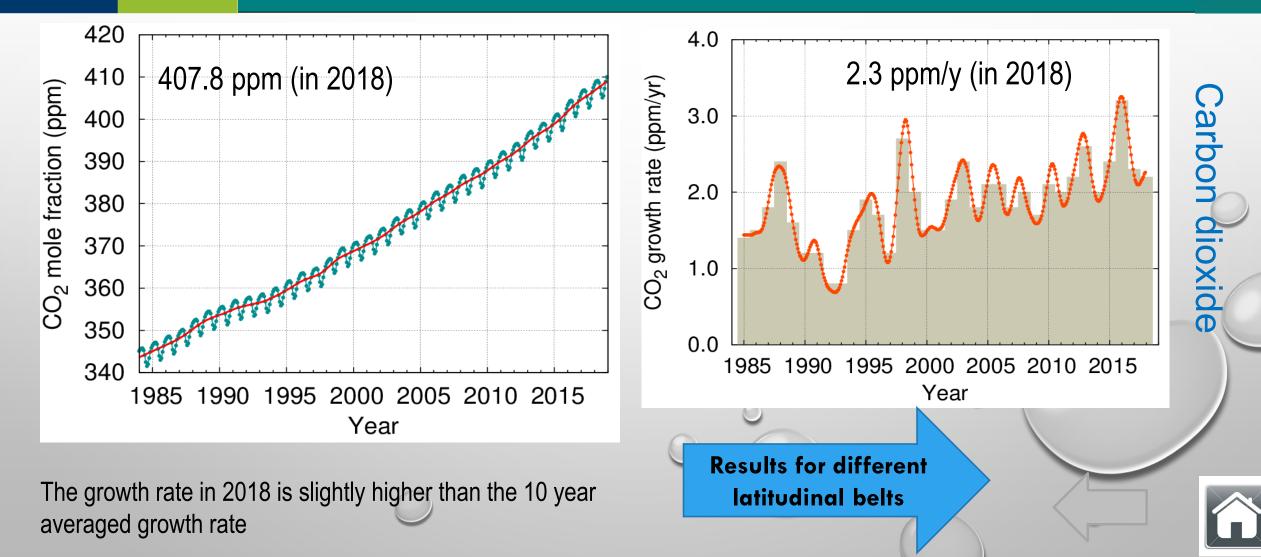
Oksana A. Tarasova (#), Alex Vermeulen, Jocelyn Turnbull, Yousuke Sawa, Ed Dlugokencky (#) WMO, Geneva, Switzerland (otarasova@wmo.int)

CO₂ details

CH₄ details

N₂O details

Other gases


Global annual mean abundances (2018) and trends of key greenhouse gases from the WMO/GAW global greenhouse gas observational network

	CO ₂	CH ₄	N ₂ O
2018 global mean	407.8±0.1	1869±2	331.1±0.1
abundance	ppm	ppb	ppb
2018 abundance relative to year 1750 ^a	147%	259%	123%
2017-18 absolute increase	2.3 ppm	10 ppb	1.2 ppb
2017-18 relative increase	0.57%	0.54%	0.36%
Mean annual absolute increase of last 10 years	2.26 ppm yr ⁻¹	7.1 ppb yr⁻¹	0.95 ppb yr-1

* Units are dry-air mole fractions, and uncertainties are 68% confidence limits **Assuming a pre-industrial mole fraction of 278 ppm for CO_2 , 722 ppb for CH_4 and 270 ppb for N_2O . Stations used for the analyses numbered 123 for CO_2 , 125 for CH_4 and 33 for N_2O .

Oksana A. Tarasova (#), Alex Vermeulen, Jocelyn Turnbull, Yousuke Sawa, Ed Dlugokencky (#) WMO, Geneva, Switzerland (otarasova@wmo.int)

ppm

410

400

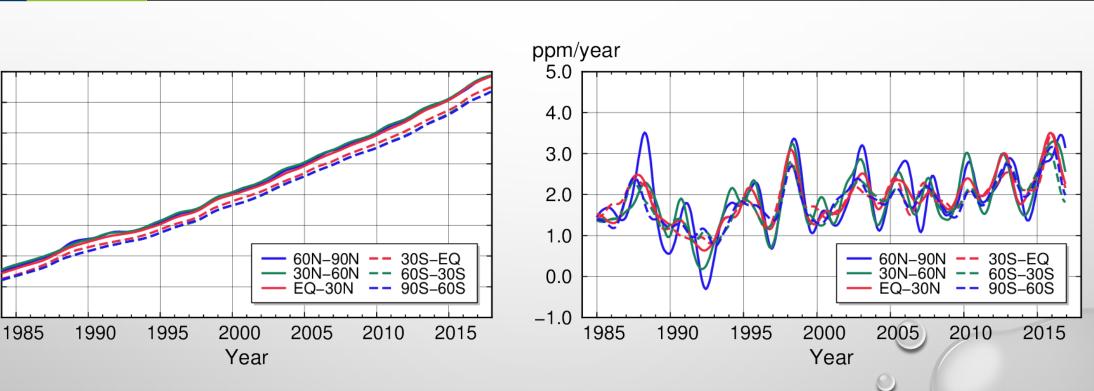
390

380

370

360

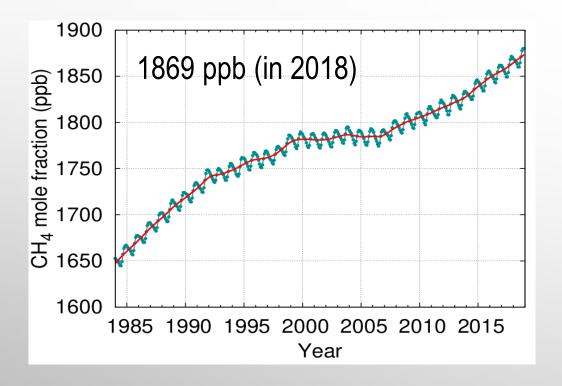
350

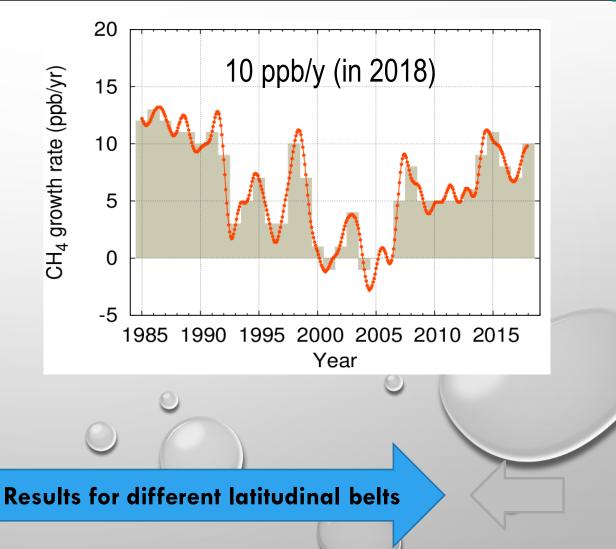

340

330

The state of greenhouse gases in the atmosphere using global observations through 2018

Oksana A. Tarasova (#), Alex Vermeulen, Jocelyn Turnbull, Yousuke Sawa, Ed Dlugokencky (#) WMO, Geneva, Switzerland (otarasova@wmo.int)


Carbon dioxide

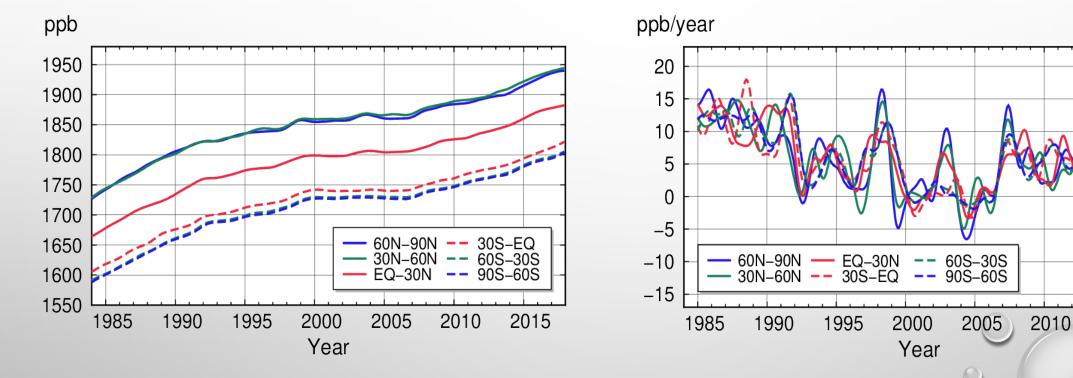


Long-term trends in the mole fractions of CO_2 for each 30° latitudinal zone and their growth rates. The largest growth rate in 2017 is seen in the polar region of the Northern Hemisphere.(not updated for 2018 yet)

Oksana A. Tarasova (#), Alex Vermeulen, Jocelyn Turnbull, Yousuke Sawa, Ed Dlugokencky (#) WMO, Geneva, Switzerland (otarasova@wmo.int)

Vethane

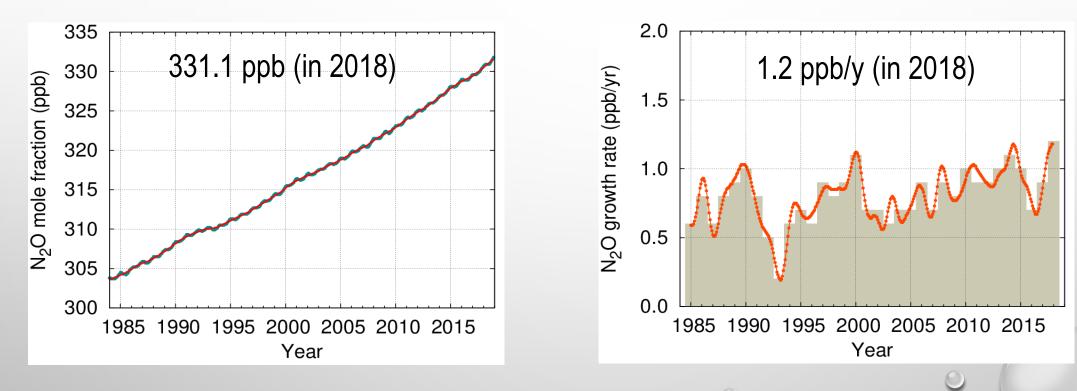
Studies using GAW CH_4 measurements indicate that increased CH_4 emissions from wetlands in the tropics and from anthropogenic sources at mid-latitudes of the northern hemisphere are likely causes of the renewed growth.



Oksana A. Tarasova (#), Alex Vermeulen, Jocelyn Turnbull, Yousuke Sawa, Ed Dlugokencky (#) WMO, Geneva, Switzerland (otarasova@wmo.int)

Vethane

2015

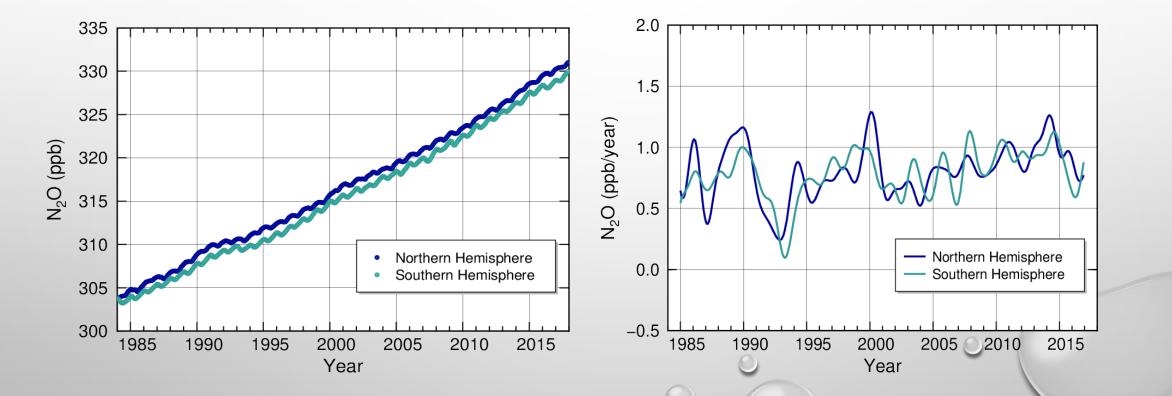


Long-term trends in the mole fractions of CH_4 for each 30° latitudinal zone and their growth rates. Studies using GAW CH_4 measurements indicate that increased CH_4 emissions from wetlands in the tropics and from anthropogenic sources at mid-latitudes of the northern hemisphere are likely causes or renewed methane growth. (not updated for 2018 yet)

Oksana A. Tarasova (#), Alex Vermeulen, Jocelyn Turnbull, Yousuke Sawa, Ed Dlugokencky (#) WMO, Geneva, Switzerland (otarasova@wmo.int)

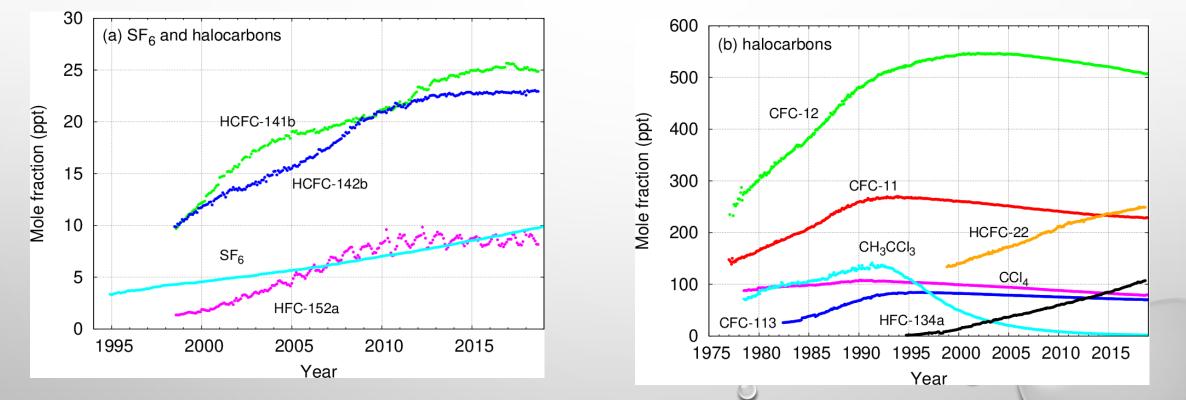
Nitrous oxide

The annual increase in 2018 is the highest since the global analysis is performed.


Results for two Hemispheres

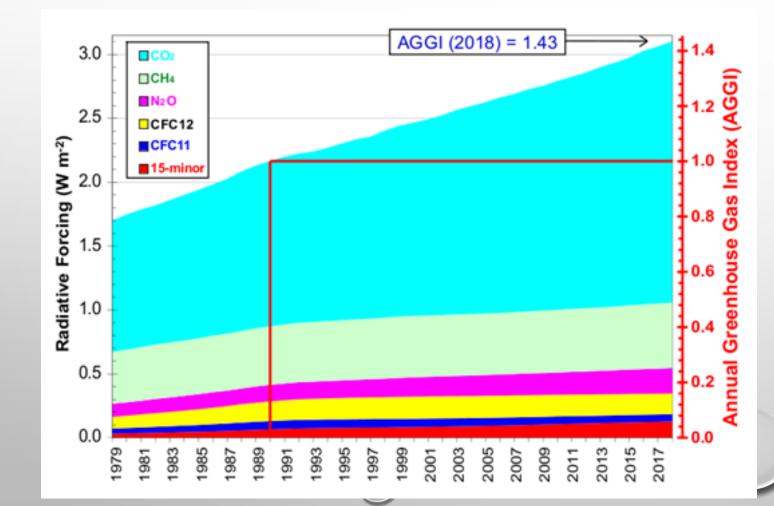
Oksana A. Tarasova (#), Alex Vermeulen, Jocelyn Turnbull, Yousuke Sawa, Ed Dlugokencky (#) WMO, Geneva, Switzerland (otarasova@wmo.int)

Vitrous oxide



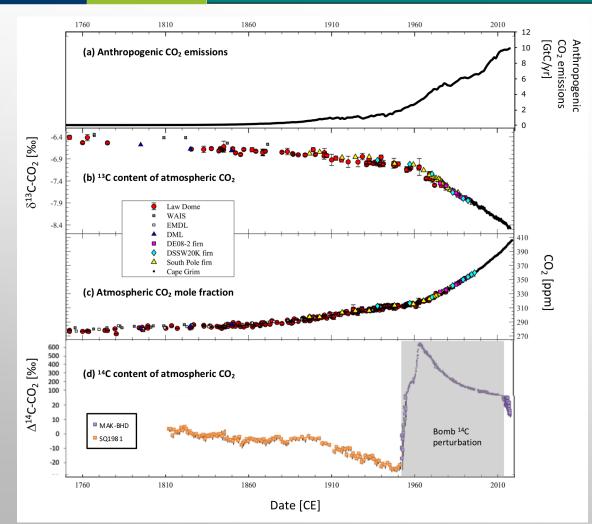
Monthly mean mole fractions of N₂O from 1980 to 2017 and annual growth rates, averaged over the Northern and Southern Hemispheres. Extensive use of fertilizer in the Northern Hemisphere leads to the increase of the inter-hemispheric gradient. (not updated for 2018 yet)

Oksana A. Tarasova (#), Alex Vermeulen, Jocelyn Turnbull, Yousuke Sawa, Ed Dlugokencky (#) WMO, Geneva, Switzerland (otarasova@wmo.int)



Monthly mean mole fractions of sulphur hexafluoride (SF₆) and the most important halocarbons: (a) SF₆ and lower mole fractions of halocarbons and (b) higher halocarbon mole fractions. The numbers of stations used for the analyses are as follows: SF₆ (85), CFC-11 (23), CFC-12 (25), CFC-113 (21), CCl₄ (22), CH₃CCl₃ (24), HCFC-141b (9), HCFC-142b (14), HCFC-22 (13), HFC-134a (10), HFC-152a (9).

Oksana A. Tarasova (#), Alex Vermeulen, Jocelyn Turnbull, Yousuke Sawa, Ed Dlugokencky (#) WMO, Geneva, Switzerland (otarasova@wmo.int)


The NOAA Annual Greenhouse Gas Index (AGGI) in 2018 was 1.43 representing a 43% increase in total radiative forcing RF (relative to 1750) by all LLGHGs since 1990 and a 1.8% increase from 2017 to 2018. The total radiative forcing by all LLGHGs in 2018 corresponds to a CO2-equivalent mole fraction of **496 ppm** (http://www.esrl.noaa.gov/gmd/aggi).

Oksana A. Tarasova (#), Alex Vermeulen, Jocelyn Turnbull, Yousuke Sawa, Ed Dlugokencky (#) WMO, Geneva, Switzerland (otarasova@wmo.int)

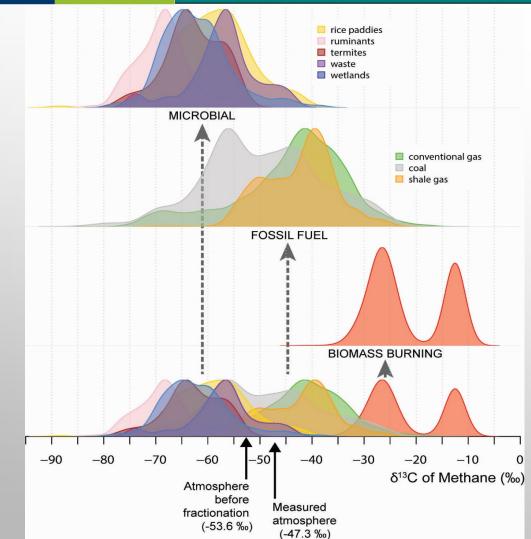


¹⁴C for fossil fuel discrimination

Measurements of the content of radiocarbon (¹⁴C) in atmospheric carbon dioxide (CO₂) provide a unique way to discriminate between fossil fuel combustion and natural sources of CO₂. Fossil fuels were formed from plant material millions of years ago and do not contain ¹⁴C. Simultaneous observations of CO₂ and ¹⁴C in it demonstrate the decline of ¹⁴C content in atmospheric CO₂ caused by CO₂ addition from the fossil fuel combustion.

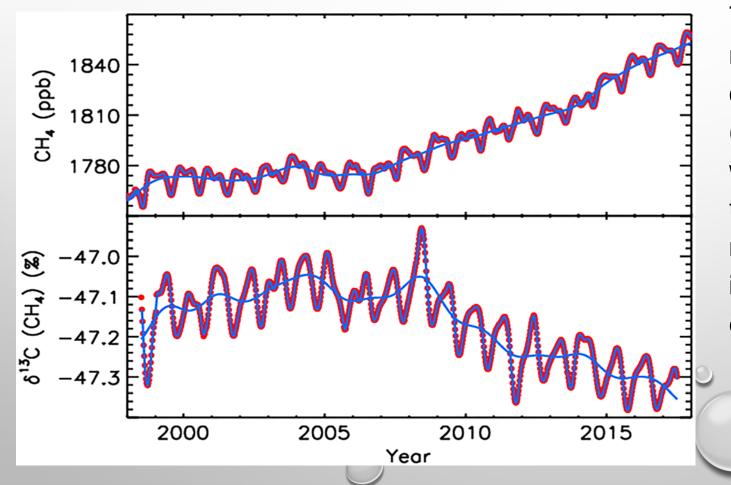
What is on the plot?

Oksana A. Tarasova (#), Alex Vermeulen, Jocelyn Turnbull, Yousuke Sawa, Ed Dlugokencky (#) WMO, Geneva, Switzerland (otarasova@wmo.int)


The figure shows the development of emissions, atmospheric abundance and isotope ratios of CO₂ since 1760. with panel (a) reflecting estimated global total anthropogenic CO₂ emissions; panel (b) presenting ¹³C content of atmospheric CO_2 from air trapped in ice cores and air collected at Cape Grim, Australia; panel (c) shows measured atmospheric CO₂ mole fractions from air trapped in ice cores and from air collected at Cape Grim, Australia and panel (d) showing ¹⁴C content of atmospheric CO₂ from tree rings and air collected at Wellington, New Zealand. As anthropogenic emissions have increased, atmospheric CO₂ increases. At the same time, both the 13 C and 14 C content of atmospheric CO₂ have declined, as the fossil fuel CO₂ emitted to the atmosphere has no ¹⁴C, and lower ¹³C content than the current atmosphere. While there are several possible explanations for the declines in each of ¹⁴C (fossil fuel combustion, geological CO₂ emissions) and ¹³C (plant and animal respiration, fossil fuel combustion), the simultaneous declines in both ¹³C and ¹⁴C content that track with CO₂ increases can only be explained by the ongoing release of CO₂ from fossil fuel burning.

Continue to CH₄ results

Oksana A. Tarasova (#), Alex Vermeulen, Jocelyn Turnbull, Yousuke Sawa, Ed Dlugokencky (#) WMO, Geneva, Switzerland (otarasova@wmo.int)


Normalized probability density distributions for the $\delta^{13}C_{CH4}$ of microbial, fossil, and biomass burning sources of methane. The flux-weighted average of all sources produces a mean atmospheric $\delta^{13}C_{CH4}$ of ~ -53.6 ‰, as inferred from measured atmospheric $\delta^{13}C_{CH4}$ and isotopic fractionation associated with photochemical methane destruction.

What can we see in the global atmosphere?

Oksana A. Tarasova (#), Alex Vermeulen, Jocelyn Turnbull, Yousuke Sawa, Ed Dlugokencky (#) WMO, Geneva, Switzerland (otarasova@wmo.int)

Though there are several hypotheses exist, the most plausible one is that an increase has occurred in some or all sources of biogenic (wetlands, ruminants or waste) emissions, which contain relatively little ¹³C. An increase in the proportion of global emissions from microbial sources may have driven both the increase in the methane burden and the shift in $\delta^{13}C-CH_4$.

More information

Oksana A. Tarasova (#), Alex Vermeulen, Jocelyn Turnbull, Yousuke Sawa, Ed Dlugokencky (#) WMO, Geneva, Switzerland (otarasova@wmo.int)

The full version of the Greenhouse Gas Bulletin is available at https://library.wmo.int/doc_num.php?explnum_id=10100

The full Data Summary by the World Data Center is available at https://gaw.kishou.go.jp/static/publications/summary/sum43/sum43.pdf

Fifty-four WMO Members have contributed CO₂ and other greenhouse gases data to the GAW WDCGG. Approximately 41% of the measurement records submitted to WDCGG were obtained at sites of the NOAA Earth System Research Laboratory cooperative air-sampling network. For other networks and stations, see GAW Report No. 242. The Advanced Global Atmospheric Gases Experiment also contributed observations to this bulletin. Furthermore, the GAW observational stations that contributed data to this bulletin, shown in Slide 2, are included in the list of contributors on the WDCGG web page (https://gaw.kishou.go.jp/). They are also described in the GAW Station Information System, GAWSIS (http://gawsis.meteoswiss.ch) supported by MeteoSwiss, Switzerland.