Data-driven analysis used to find human influences on groundwater heads – physics-based modelling needed for verification

EGU2020-7659: Separating groundwater response to climate and anthropogenic

changes using long-term groundwater head time series in the Netherlands

Willem J. Zaadnoordijk TNO Geological Survey of the Netherlands willem_jan.zaadnoordijk@tno.nl

Introduction

We consider the groundwater system with precipitation and reference evapotranspiration as natural boundary conditions. Our reference is the Netherlands with its moderate climate, mostly controlled surface water levels, and mainly public water supply with regulated (ground)water abstractions and documented drawdowns.

Method

Assume precipitation and evapo-transpiration are only natural influences on ground water heads, separating response to these meteorological factors from the variation of groundwater heads using transfer-noise modelling gives the change due to human activities. Zaadnoordijk et al. (2019) Precipitation

vaporation

nnovations

Time \rightarrow

functions

Noise model

Base level of time series model

Results

Precipitation and evaporation response; optionally response to other variables; and residuals.

Discussion

Success in transfer-noise modelling no guarantee for causal relation.

E.g. Maas (2012) showed mismatch drawdown from extraction between data driven and physics based models due to water and land management changes having regional effect similar to abstraction. Witte et al. (2019) verified influence from urbanisation and increasing agricultural crop yields as causes of regional groundwater head trend.

Examples of splitting series with structural level and response parameters

		14066	14070	14000	14000			2 4070	
34C0234		out1966-	out1976-	out1986-	out1996-			02_1976-	
1_v1	out	1975	1985	1995	2005	out2006-	o21975	1995	o2_1996-
egimeok	1	1	. 1	1	1	1	1	1	1
MSE	20.13	20.23	19.07	23.80	16.74	20.23	20.25	25.18	20.42
ase	1401	1389) 1421	1354	1384	1415	1389	1391	1402
10prec	88733	102034	115991	109987	110241	93536	102870	109905	97334
u_pr	149	158	3 224	165	167	144	159	187	147
gma_pr	122	127	203	144	139	114	129	166	117
/FactM0	1.01	0.85	5 1.11	0.83	0.98	1.06	0.86	0.98	1.00
rucniv	1473	1496	5 1499	1472	1479	1484	1497	1485	1483

5G0033			out1966-	out1976-	out1986-	out1996-		02_1976-		
_v1	out	out-1965	1975	1985	1995	2005	out2006-	o21975	1995	o2_1996-
gimeok	1	1	. 1	1	1	1	1	1	1	1
1SE	16.7	21.6	5 17.9	17.3	16.0	13.9	13.0	21.4	17.1	13.5
se	620	639	616	621	606	636	613	626	614	621
Oprec	33005	25835	36830	39866	34106	29394	35215	32033	35601	28290
ı_pr	73	79	82	100	70	88	75	80	83	60
ma_pr	79	82	. 87	109	76	110	81	85	90	65
FactM0	1.55	1.87	1.63	1.63	1.46	1.78	1.33	1.75	1.57	1.47
ucniv	621	627	612	617	610	626	625	617	613	624

Example adding linear trend entire period (B50F0110)

Correlation not necessarily indication of causal relationship. Physics-based model needed to understand relation

References

Conclusions

- Maas (2012) Caveats time series analysis Terwisscha (in Dutch) Stromingen, 18,#2, 43-75 Obergfell (2020) PhD thesis TU Delft
- https://doi.org/10.4233/uuid:40454512-e67c-41c5-963b-5862a1b94ac3
- Rolf (1989) downward trend gw levels NL (in Dutch) TNO report
- Witte et al. (2019) Water, doi:10.3390/w11030478
- Zaadnoordijk et al. (2019) Groundwater doi: 10.1111/gwat.12819

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 731166