

Marine radiocarbon simulations carried out with a global multi-resolution ocean model M. Butzin, D. Sidorenko, P. Köhler

Prior to the Holocene, Marine Reservoir Ages (MRAs, i.e. the ¹⁴C ages of marine surface waters) are poorly constrained through reconstructions. Moreover, the entire database of marine ¹⁴C records gets increasingly patchy and sparse the further one steps backwards in time. Model simulations provide a valuable interpretation tool and can help to fill spatial and temporal gaps. However, ¹⁴C paleorecords typically originate from continental margins, marginal seas, or tropical lagoons. These regions are not properly resolved by default coarse-resolution ocean models, which may result in regional model and hence interpretation biases.

Present and past ¹⁴C records

1972 – 2012 GLODAP v2 database (doi: 10.5194/essd-8-297-2016)

Past 40 kyrs

Sites may not be representative for the global ocean circulation

Compilation by Zhao et al., 2018 (doi:10.1002/2017PA003174, figure modified)

The resolution problem of ¹⁴C models

Mesh of the LSG OGCM, applied for IntCal20 & Marine20

If we increase the horizontal resolution, the conventional approach involving uniform meshes results in computational costs which are prohibitive in most cases. To overcome these issues, we have implemented ¹⁴C into the state-of-the-art ocean model **FESOM2** which employs unstructured meshes with variable resolution.

FESOM2 multi-resolution mesh

FESOM2 employs unstructured meshes with variable horizontal resolution. This approach permits zooming into certain regions of interest while keeping the model resolution in other areas sufficiently moderate.

FESOM2 simulation setup

- Global multiresolution approach with unstructured meshes
- Present-day simulation: CORE-II climate forcing
- Glacial simulation: Climate forcing for the Last Glacial Maximum from coupled climate simulations (Shi, pers. comm.)
- Radiocarbon is simulated as F¹⁴R_{oce-atm}
- Integration period 7000 10,000 years so far the interior of the Pacific Ocean is not equilibrated yet
- No model calibration with bomb ¹⁴C so far at the current stage, all results are preliminary and should only be considered as proof of concept

Model description papers:

Danilov et al., 2017, doi:10.5194/gmd-10-765-2017 Koldunov et al., 2019, doi:10.5194/gmd-12-3991-2019 Scholz et al., 2019, doi:10.5194/gmd-12-4875-2019

¹⁴C Ages: Pre-Nuclear Present Day (PNPD)

Marine Reservoir Age

¹⁴C Age along 30°W (Atlantic)

Glacial simulation: Ocean climate changes

¹⁴C Ages: Last Glacial Maximum

MRA Difference LGM - PNPD

¹⁴C Age Difference @30°W (Atlantic)

- The global multiresolution approach overcomes the resolution problem of the current generation of ¹⁴C-equipped ocean general circulation models.
- FESOM2 is integral part of the coupled AWI Earth System Model which permits to study climate – ¹⁴C cycle interactions in a consistent way.
- First test simulations show promising results.

