Intensity Prediction Equation for Austria: Applications and Analysis

María del Puy Papí-Isaba, Stefan Weginger, Maria-Theresia Apoloner, Yan Jia, Helmut Hausmann, Rita Meurers & Wolfgang Lenhardt

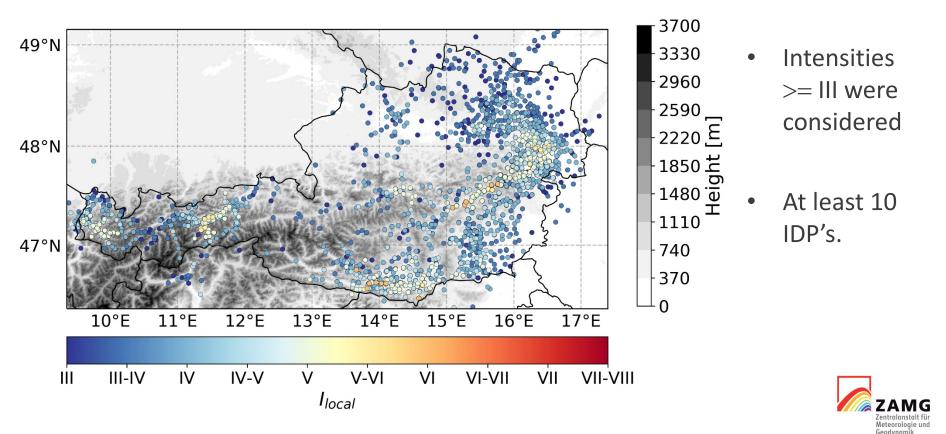
Vienna | Austria | 3–8 May 2020

m.papi-isaba@zamg.ac.at

Contents

María del Puy Papí Isaba

EGU 2020 Slide 2


- 1. Macroseismic data set (Austrian catalog)
- 2. Intensity Prediction Equation (IPE)
 - i. Epicentral intensity (I_0) calibration
 - ii. Local site response
 - a) Topography correction
 - b) Geology correction
- 3. Model verification
- 4. Real-Time ShakeMaps
- 5. Conclusions
- 6. Outlook

Austrian Earthquake Catalog (period 2004-2018)

• 42 earthquakes with $3.0 \le M_w \le 5.4$ and 3,214 IDP's

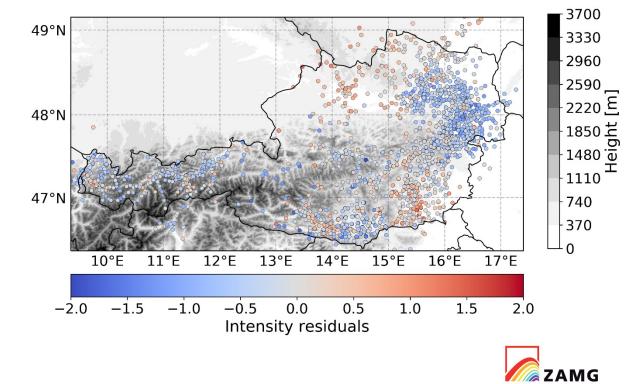
1. Macroseismic data set

EGU 2020 Slide 3

2.a) Epicentral intensity (I_0) calibration

Calculation:

$$I_{local} = k_0 + k_1 M_w + k_2 \ln(h) + c_0 \cdot \ln(R/h)$$

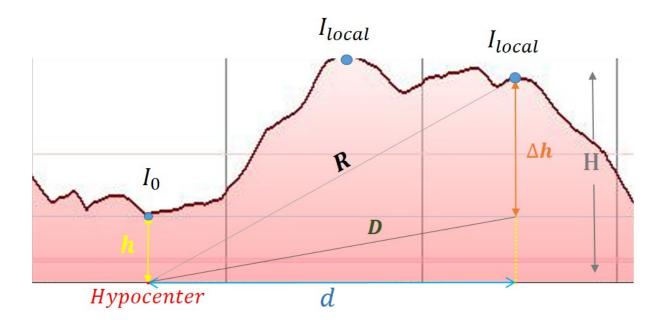


María del Puy Papí Isaba EGU 2020 Slide 4

 I_0 : Epicentral intensity I_{local} : Local intensity M_w : Moment magnitude h: Focal depth [km] R: Hypocentral dist. [km]

$$k_0 = 2.56$$

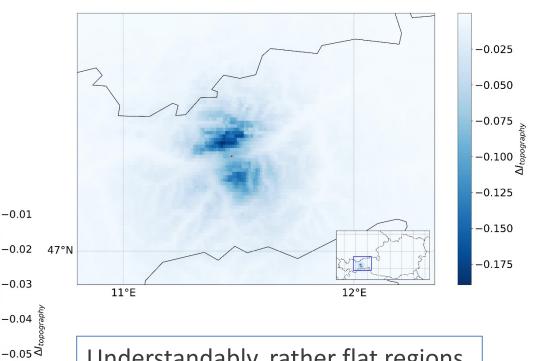
 $k_1 = 1.32$
 $k_2 = -0.94$
 $c_0 = 1.05$
 $\sigma(I_0) = \pm 0.26$
 $\sigma(I_{local}) = \pm 0.50$


2. Intensity Prediction Equation (IPE)

María del Puy Papí Isaba EGU 2020 Slide 5

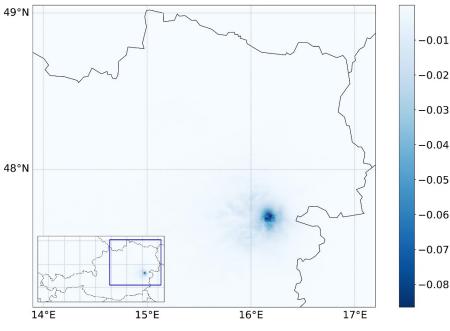
2.b.i) Local site response - Topography correction

Waves travel further distances when they overcome a mountain than when they travel over moderate slope surfaces. This added distance is usually disregarded when deriving IPEs but taken into account when computing a topographic correction. In this study, we determined hypocentral distances (R) together with the altitude (Δ h) of the IDP location based on a digital terrain model (DTM).



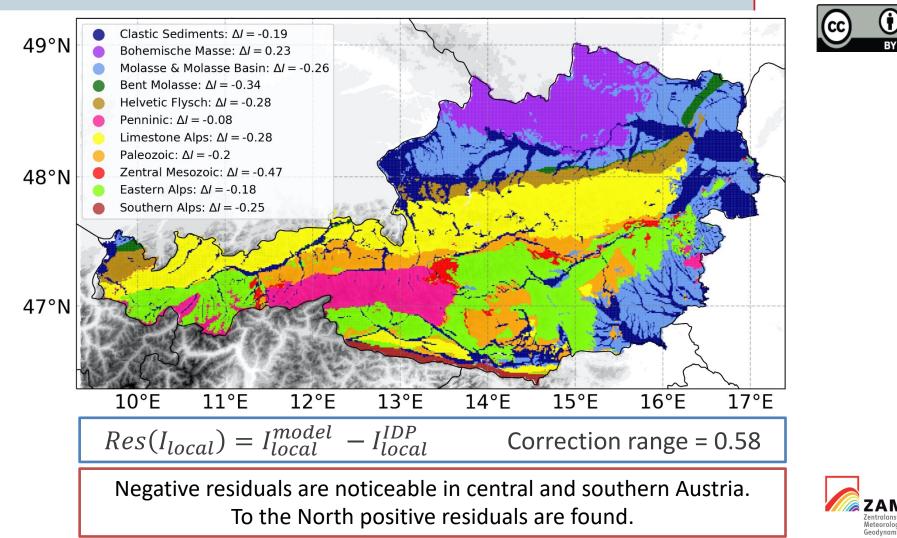
2. Intensity Prediction Equation (IPE)

María del Puy Papí Isaba EGU 2020 Slide 6

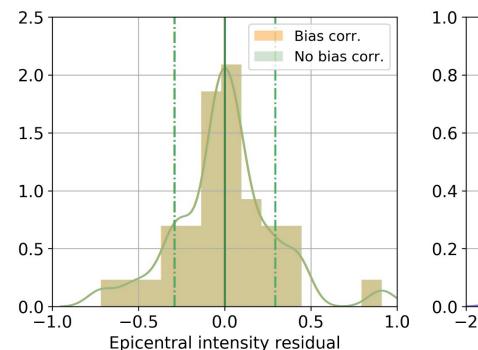

2.b.i) Local site response - Topography influence

Understandably, rather flat regions do not have a notable effect on the IPE results.

As expected, the topography influence is more notorious in mountainous regions


2. Intensity Prediction Equation (IPE)

and the second s


María del Puy Papí Isaba

EGU 2020 Slide 7

2.b.ii) Local site response - Geology correction

2. Intensity Prediction Equation (IPE) $\underbrace{\text{Peres}}_{\text{res}} 2020$ $\underbrace{\text{Verta}}_{\text{res}} 2020$ $\underbrace{\text{Verta}}_{\text{res}} 2020$ $\underbrace{\text{Side 8}}_{\text{Geo.}} 2020$ $\underbrace{\text{Side 8}}_{\text{Fes}} 2020$ $\underbrace{\text{Side 8}}_{\text{Fes}} 2020$ $\underbrace{\text{Fes}}_{\text{res}} = 0.0$ $\underbrace{\text{Fes}}_{\text{res}} = 0.0$

 $\sigma_{res.no~Geo.} =$

0.26

$$\overline{res}_{no \ Geo.} = -0.20$$

$$\overline{res}_{Geo.} = 0.0$$

$$\sigma_{res.no \ Geo.} = 0.50$$

$$\sigma_{res.no \ Geo.} = 0.50$$
No geo. corr.
Geo. corr.

0

Local intensity residual

 $^{-1}$

ZAMO Zentralanstalt fü Meteorologie un Geodynamik

María del Puy Papí Isaba

(cc)

EGU 2020 Slide 9

(†)

Root Mean Square Error (RMSE) and Skill-Score (SS)

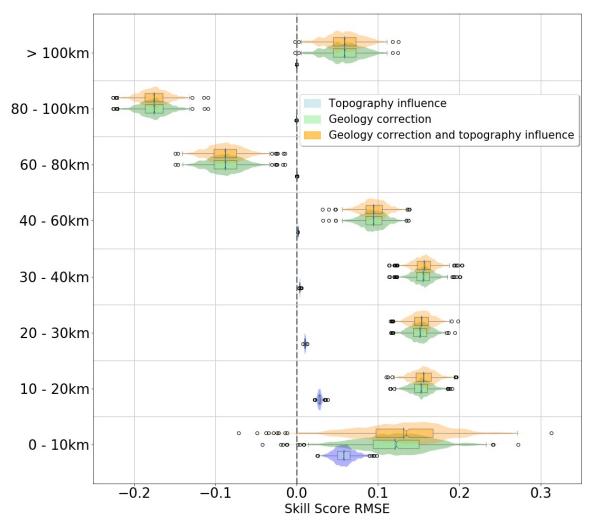
- To assess the relative improvement of the IPE over a reference value the Skill Score (Murphy 1988) of the RMSE was used.
- The common RMSE-SS (Murphy 1988) has a range between -∞ and 1. However, in this study, the definition introduced by Atencia et al. (2019) was used.

$$RMSE - SS = \begin{cases} 1 - \frac{RMSE_{corr.}}{RMSE_{IPE}} & if RMSE_{corr.} < RMSE_{IPE} \\ \frac{RMSE_{IPE}}{RMSE_{corr.}} - 1 & if RMSE_{corr.} \ge RMSE_{IPE} \end{cases}$$

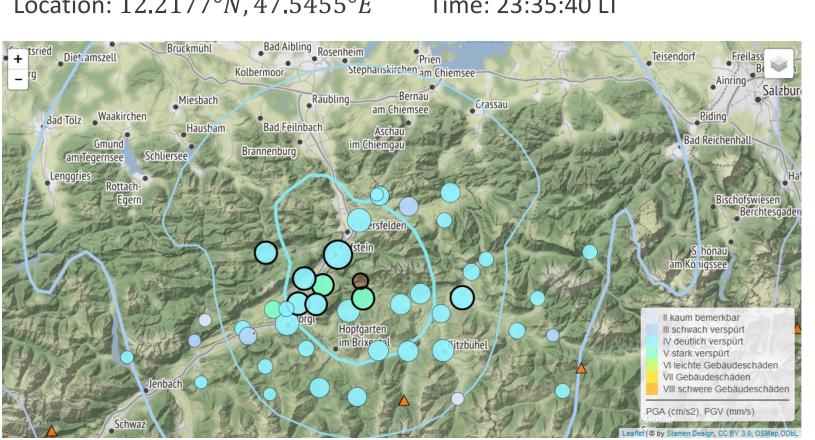
 $RMSE_{IPE} \equiv$

Intensity values derived from the IPE with no correction $RMSE_{corr.} \equiv$ Intensity values derived from the IPE with topography influence, geology correction or both

3. Model Verification


Vienna | Austria | 3–8 May 2020

María del Puy Papí Isaba EGU 2020 Slide 10


Same data set as for model calibration

The topography plays and important roll in epicentral regions and it looses influence with distance.

The geology correction is rather stable and has a positive improvement in the IPE but for distances from 60-100 km where it worsens the IPE results.

Earthquake on the 22nd of October 2019

 $m_l = 3.9$ $I_0^{IPE} = I_0^{IDP} = V$

4. Real-Time ShakeMap

depth = 12km

Location: 12.2177°*N*, 47.5455°*E* Time: 23:35:40 IT

EGU General Assembly 2020

Vienna | Austria | 3-8 May 2020

María del Puy Papí Isaba EGU 2020 Slide 11

Meteorologie und Geodynamik

5. Conclusions

We may conclude that:

General Assembly 2020

Vienna | Austria | 3-8 May 2020

María del Puy Papí Isaba EGU 2020 Slide 12

- The developed IPE describes very well contemporary and historical data.
- At larger distances from the epicenter the model fits the IDP values increasingly less (low local intensities with greater residuals) which can be attributed to local geological "anomalies".
- Real-Time ShakeMaps were implemented for an early warning system and duty activities.
 A border region effect due to the absence of the geology correction outside of Austria was noticed.

5. Conclusions

General Assembly 2020

Vienna | Austria | 3-8 May 2020

Conclusions - General

Slide 13

EGU 2020

María del Puy Papí Isaba

The applied corrections improve the IPE results:

- The topography influence is more remarkable in regions close to the epicenter and for mountainous regions.
- The geology correction plays a more important role overall distances and correct for the IPE bias.
- Generally, when both, topography influence and geology correction, are applied the IPE improves.

6. Outlook

Vienna | Austria | 3-8 May 2020

Current and future work

- **1. Hazard map development**: the intensity based hazard map is currently being developed. For methodology, software and a the development accomplished until now I refer to Stefan Weginger's presentation in this session.
- 2. Relationship of PGV/PGA and intensity shaking: A relationship between GMPEs (PGV and PGA) and the developed IPE will be derived.
- **3. Study of historical earthquakes in Austria:** We are currently developing machine learning algorithms to derive focal parameters from historical earthquakes aided by the presented IPE.

