The effect of the addition of ¹³C labelled artificial root exudates on carbon cycling in intact peat bog mesocosms Stephan Glatzel¹, Andreas Maier¹, Claudia Blauensteiner¹, Erich Inselsbacher^{1,2}, Karsten Kalbitz³, Robert Peticzka¹, Gang Wang^{1,4} and Raphael Müller¹ ¹ Faculty of Geosciences, Geography, and Astronomy, University of Vienna, Austria ² Institute of Soil Research, University Natural Resources and Life Sciences, Vienna, Austria ³ Institute of Soil Science and Site Ecology, TU Dresden, Germany ⁴ College of Biological and Agricultural Engineering, Jilin University, Changchun, China #### **Problem:** - Do root exudates enhance peat decomposition? - What is the fate of root exudates in acidic bog peat? ## **Experiment:** - Addition of artificial root exudates(99% ¹³C- glucose, amino acid and acetic acid into intact peat cores) - Monitoring of release of ¹²CO₂, ¹²CH₄, ¹³CO₂, ¹³CH₄ - Repeated DOC sampling in 5, 15, and 25 cm depth and analysis of DOC and DO¹³C concentration - Analysis of peat for ¹³C content following the experiment #### **Results Peat:** Strong accumulation of label in depth of injection 3 weeks after labelling: 20.25 % of added ¹³C # Results CO₂ and CH₄: Substantial evolution of added 13C as $^{13}CO_2$ and $^{13}CH_4$: 31.31 % of added ¹³C mg C ¹³CH₄-C: background subtracted #### **Results DOC:** - highest DOC concentration at 15 cm depth (rhizosphere) indicates immobile DOC - up to 20% ¹³DOC in 15 depth! (made further analyses impossible for a while) ### **Summary:** 140 mg of injected ¹³DOC did not enhance peat decomposition After 3 weeks, of injected artificial labelled root exudates... - probably up to 50% remained in solution in the depth of injection - 20% were found in peat in the depth of injection - 30% were released as CO₂ and CH₄ - **→** DOC in the examined bog peat is remarkably immobile and stable