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Crustal-scale velocity reconstruction SE I S COPE

MCS data:

• Short streamer - limited depth-penetration

• 3D wavefield scattering from complex

structures

• Need for illumination from the deep part of the

model

OBS data:

• Wide-angle data for deep illumination

• Refracted waves and wide-angle reflections

undershooting the structure

• Dense nodes increasing the data redundancy

GO 3D OBS model
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Challenge - large models constrained by sparse (but diverse) data SE I S COPE

(Górszczyk et al., 2017)
3



Building starting model - First Arrival Tomography SE I S COPE

Problem

• Precision of picking and prediction

of first arrivals determines

occurrence of cycle-skipping

• The criteria is difficult to fulfil

⇒ far offsets

⇒ long time of propagation

⇒ more wavelets to propagate

⇒ accumulation of error

⇒ higher probability of

cycle-skipping (Pratt, 2008)

• Lack of information about the

later arrivals

Solution

⇒ extract more information to constrain better tomographic model

⇒ use more convex misfit function able to mitigate cycle-skipping issue
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GSOT for FWI SE I S COPE

Recently Optimal Transport has been proposed to design more convex misfit functions.

• OT distance looks for an optimal mapping M between synthetic and observed data

• OT is convex with respect to shifted patterns - proxy to convexity with respect to wave velocities

cij = |ti − tj |2 + |η (dcal,i − dobs,j) |2; η = τ
A

(Métivier et al., 2019)
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GSOT for FWI SE I S COPE

• Comparison of two Ricker functions

• The gray arrows represent the assignment of the corresponding samples when small time-shift is used
(Métivier et al., 2019)
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GSOT for FWI SE I S COPE

• Comparison of two Ricker functions

• QUESTION: Can we combine GSOT with proper data selection to relax the cycle-skipping constraint

on the initial FWI model?
(Métivier et al., 2019) 6
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Experimental setting - GO 3D OBS model SE I S COPE

• Subduction zone

• 30 km × 175 km

• 72 OBS - 2 km spc.

• 1500 SP - 100 m spc.

• 2Hz Ricker wavelet

• 20 s propagation

• 1D initial model

• Clear cycle-skipping

• TD acoustic FWI

• LBFGS optimization

• Density const. or true

• Single frequency band

• 3 time-windows

• MPI over OBS
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Convexity analysis SE I S COPE

Population of the Vα models generated ac-

cording to formula:

Vα = Vtrue + α2(Vinit - Vtrue)

where -1 ≤ α ≤ 1.
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Model and data evolution SE I S COPE

STAGE 1 - 50 it.

• TW 0.2s + 0.5s taper

• Normalized amplitude

• Strong smoothing

STAGE 2 - 20 it.

• TW 0.2s + 0.5s taper

• True amplitude

• Moderate smoothing

STAGE 3 - 150 it.

• TW 0.2s + 9s taper

• True amplitude

• Small smoothing

STAGE 4 - 150 it.

• Full time

• True amplitude

• Small smoothing
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Model and data evolution SE I S COPE

TRUE MODEL

FINAL MODEL: ∼400 iterations; ∼30 hours; 3 nodes; 72 cores
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Conclusion SE I S COPE

• GSOT-based FWI can significantly reduce the constrain on the accuracy of initial FWI model

• Traveltimes defining mute window can be approximate and not precise - less problematic picking

• Multiscale FWI strategy and proper data-selection seem still obligatory

• Challenges for real data application - accurate source estimation, elastic effects, noise

• Future development - extensions from trace-by-trace to 2D misfit
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GO 3D OBS model SE I S COPE
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• Université Grenoble Alpes, UGA https://univ-grenoble-alpes.fr

• Institute of Geophysics, Polish Academy of Sciences, IG PAS https://igf.edu.pl

• CYFRONET (Prometheus) computing center http://kdm.cyfronet.pl

13

http://seiscope2.osug.fr


References i SE I S COPE
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