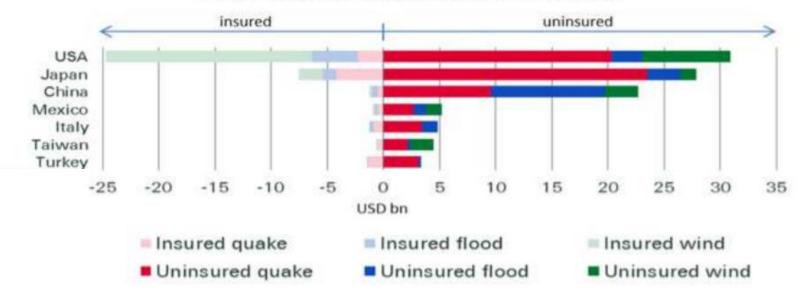
AN ANALYSIS OF THE CALIFORNIA EARTHQUAKE INSURANCE MARKET SINCE ITS EARLY STAGES


A. Pothon^(1;2), P. Guéguen⁽²⁾, S. Buisine⁽¹⁾ and P.-Y. Bard⁽²⁾
(1): AXA Group Risk Management
(2): ISTerre, Université de Grenoble-Alpes

European Geosciences Union May 4th, 2020

Overview

A large share of uninsured loss caused by natural catastrophes
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■

Annual expected nat cat property damage losses

Holzheu and Turner (2018)

➡ Focus on the USA : share of insured people against earthquake risk

- → California (2018): 13% (California Department of Insurance)
- \rightarrow Rest of the USA (2016): \approx 6% (Statistica)

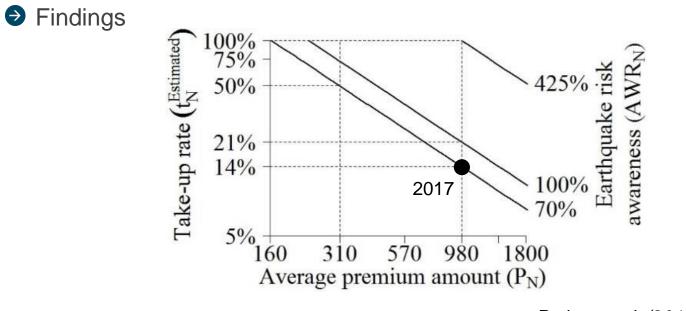
Analysis of the California earthquake insurance scheme at homeowner level

Data

→ Earthquake insurance market data (1915 – 2017)

- Average premium amount (1915 2017)
- Total premium amount collected (1915 2017)
- Share of homeowners insured (1915 2017)

→ Socio-economic data (1915 – 2017)


- Consumer Price Index
- Average building price
- Population density
- \rightarrow Past earthquakes (1966 2016)
 - ShakeMaps footprints in intensity (MMI)

Modeling framework

- → Homeowners subscribe earthquake insurance according to their awareness of earthquake risk and the premium amount (Expected Utility theory)
- → The earthquake risk awareness is calculated as the ratio between the believed and the historical probability for a homeowner to experience a MMI ≥ VIII

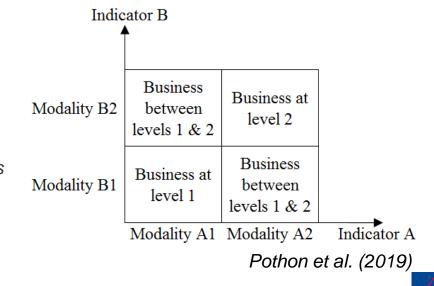
Analysis of the California earthquake insurance scheme at homeowner level

Pothon et al. (2019)

- → To get most of California homeowners buying an earthquake insurance cover, there is two possibilities:
 - The threat of an imminent large earthquake (M6.7+). AWR_N=425% corresponds to a occurrence probability of 66% over the next year
 - A premium decrease by 66% (i.e. from \$980 to \$310)
- → Need for a new earthquake insurance scheme to develop this market

Analysis of the California earthquake insurance scheme at market level

- Data (1906 2018)
 - → Earthquake insurance market data
 - → Litterature review
 - Earthquake prevention measures
 - Earthquake risk modeling
 - Political decision and official communication
 - Historical earthquakes and their socio-economic consequences


→ Benchmark with other earthquake insurance schemes

- France (CAT-NAT plan)
- India
- Indonesia

Modeling framework

→ Development of a maturity scale

- Several indicators
- Each indicator has several modalities

Analysis of the California earthquake insurance scheme at market level

Findings

 \rightarrow Details of each modality for each indicator of the maturity scale

Variable	Emerging	Standard	Advanced	Sustainable	
Risk monitoring	Not material: A destructive earthquake is not expected to occur again	Experienced: Recent events showed the destructive power of an earthquake	Controlled: The risk is monitored and extreme events are modeled	Anticipated: The risk is monitored both at short term and long term view.	
Premium affordability	Very low: The risk being ignored, the premium is low and considered as a profit	Commercial-based: The premium amount reflects the market and does not take into account the risk level	oremium amountThe premium is calculatedThe prects the market andbased on the risk in orderboth thenot take into accountto guarantee the solvencyconsum		
Market demand	Low: People do not feel the need to be protected against the risk	High: Following the last earthquakes, insurance need is spreading over the population	Low: High premiums lead to a trade-off between the risk and the cost. Only few people prefer to be insured, especially if no earthquake has occurred recently	encouraged by a significant premium amount decrease and a	
Prevention measures	Emerging: Only academic researches work on prevention measures. Applications are very few and on a very simple basis.	managed by the supported both by the officials and the insurance		Economical: Prevention is funded by the market and is recognized as the only long-term efficient risk reduction process	
Solvency level of insurance companies	Low: The solvency of insurance companies is questionable because the earthquake risk is not monitored	Medium: Insurance companies are subject to solvency regulations.	High: Insurance companies' reserves are designed to face a very extreme loss	Secured: Additional mechanisms are used to support insurance companies if their reserves are exceeded.	

Analysis of the California earthquake insurance scheme at market level

Findings

E	MERGING	st	ANDARD		ADVANCED		> sus	STAINABLE
Risk:	Not material	Risk:	Experienced	Risk:	Controlled	Ri	sk:	Anticipated
Premium:	Very low	Premium:	Increasing	Premiu	n: Yearly based	Pr	emium:	Long-term based
Demand:	Low	Demand:	High	Demano	l: Low	De	mand:	High
Prevention	: Emerging	Prevention:	Institutional	Prevent	ion: Risk holders	Pr	evention:	Economical
Solvency:	Low	Solvency:	Medium	Solvenc	y: High	So	wency:	Secured

Pothon et al. (2019)

- Current earthquake isnurance scheme in California lies between the grades « Advanced » and « Sustainable ».
- \rightarrow To improve the earthquake insurance scheme the effort must focus on:
 - A « Secured » Solvency (e.g. a State guarantee)
 - A « Long-term based » premium (e.g. calculated over a long time period)
 - A « High » demand (e.g. consecutive to a lower premium amount)
- → A long-term based insurance policy has been designed as part of my PhD. The resulting premium amount is decreased up to 66%.

References

→ Holzheu, T. and G., Turner (2018). The Natural Catastrophe Protection Gap: Measurement, Root Causes and Ways of Addressing Underinsurance for Extreme Events, the Geneva Papers, 2018, 43, 37-71.

www.researchgate.net/publication/321891415 The Natural Catastrophe Protection Gap M easurement Root Causes and Ways of Addressing Underinsurance for Extreme Events

→ Pothon, A., S., Buisine, P., Guéguen and P.Y., Bard (2019). A maturity scale for earthquake insurance development based on the California experience, Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions – Silvestri & Moraci (Eds), 7th International Conference on Earthquake Geotechnical Engineering, 17th – 20th June 2019, Rome.

<u>www.researchgate.net/publication/334051880 A maturity scale for earthquake insurance</u> <u>development_based_on_the_California_experience</u>

→ Pothon, A., P., Guéguen, S., Buisine and P.-Y., Bard, P.-Y. (2019). California earthquake insurance unpopularity: the issue is the price, not the risk perception. Nat. Hazards Earth Syst. Sci. 19, 1909–1924.

www.nat-hazards-earth-syst-sci.net/19/1909/2019/