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ENERGY OF FORMATION

eterogeneous ice nucleation

Important to understand ice cloud formation and dynamics for global climate
models or rain seeding applications ("geoengineering”)

Homogeneous ice nucleation at -40°C ; mixed ice and water clouds form at -15°C
Nucleation catalyzed by a foreign solid surface (e.g. aerosol particle)
Interpretation of experiments typically with classical nucleation theory

Challenging to study atomistic details of ice nucleation on active sites
both experimentally and computationally!
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CRYSTAL GROWS

9

(001)

b
g a
C

Kiselev, et al., Science, 355, 367 (2017),
Heterogeneous ice nucleation on K-rich
Feldspar particles



Which surfaces promote ice crystal formation effectively?

Depends on surface morphology (crystal structure, confined geometries) and chemistry (hydrophilicity)

For atmospheric ice nucleation: organic aerosol, microorganisms, mineral dust particles, ...

Molecular Dynamics simulations, at different levels of accuracy, can help understand / predict ice nucleation ability

* For many systems, time scale of nucleation is too long for unbiased MD -> seeded MD or enhanced sampling

Quantum chemistry TIP4P/ice all-atom Monatomic water (mW) potential
tential
 “afew” H,0 po N o
molecules ~ 1000 H,0 molecules 100 000 ‘H,0’ molecules

* Very short or no
time evolution
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Heterogeneous ice nucleation on silver iodide particles

(a) Ice |h, basal plane
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(b) 3-Agl (0001) surface

©096%c%
0YeYe%Ye"
CoVeVe%
096%¢%e®

-~

a=459A

o
)

o

» @

* Silver iodide has been used as a rain seeding agent for decades

* Lattice mismatch between 3-Agl (0001) and Ice Ih (0001) is only 2%
* Ice nucleation can be observed in unbiased molecular dynamics
 (0001) is a polar surface! Defects and reconstructions should be

common!
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Simulation details

Classical force field, Lennard Jones and Coulomb pair potentials:
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e All Agt and I ions fixed to bulk positions
* H,0 modeled with TIP4P/ice potential [1]
* Agl-H,0 interactions by Hale and Kiefer [2], originally fitted to ST2 water
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* GROMACS version 5 MD code (single precision), NVT (or NpT) ensemble

e Timestep At=2fs

* Nosé-Hoover thermostat, T = 0.4 ps

* Lennard-Jones and real-space electrostatics cut-off r. = 8.5 A (from TIP4P/ice)
* Long range electrostatics from particle-mesh Ewald scheme (PME)

* H,0 molecule rigid geometry enforced with SETTLE algorithm

* 3D periodic boundary conditions

[1] J. L. F. Abascal, E. Sanz, R. G. Fernandez, and C. Vega, J. Chem. Phys. 122, 234511 (2005).

[2] B. N. Hale and J. Kiefer, J. Chem. Phys. 73, 923-933 (1980).
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0001) has Tasker type 3 dipole: simulation setup?
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Dipole field causes artefacts in
traditional simulation setup with
periodic boundary conditions (a-b)
All simulations carried out with
the "mirror image slab” setup (d)
in order to cancel dipole fields

OW number density (nm-3)
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Single slab with separated water films in NVT (b) ——
Mirror image slabs with separated water films in NVT (c)
Mirror image slabs with one water film in NVT (d) —|
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Agl (0001) hydration layer structure and dynamics

T=263K
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water exchange in
HL1 still occurs on a
nanosecond time
scale!

e Stabilizing the
structure of HL2
marks the beginning
of ice growth on the
flat surface.
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lce nucleation rates from MD simulations at T = 263 K

(a) Single vacancy (b) Double vacancy
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* We consider six different (0001) surfaces with defects (a-f)
« 10 independent MD simulations for each system P“q(t) = exp[-(Rt)']

* Nucleation rates from fit to Py, from induction times in MD simulations



Effect of defects on ice nucleation on Agl (0001) surfaces

I
MD rates

System Nucleation rate (x10% m=2 s 1) 4x10%° ‘é—'\'\
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Different systems

* Perfect Agl (0001) surface exhibits the highest nucleation rate
* Hydration layer perturbation around defects hinders formation of

Distance from lower terrace (A)
o

> > o 0 . _
0 | ‘l‘t ice nuclei
35 40 45 50 55 60 65 * Nucleation rate on perfect surface scaled by accessible surface area
x (A) (circles) predicts nucleation rates from MD (lines) on surfaces with

defects welll



Atomistic details of ice growth mechanisms

Analysis of ice structure with the
CHILL+ algorithm [1]

Ideal growth rate corresponds to
layer-by-layer growth of either
hexagonal (lh) or cubic (Ic) ice
Stochastic appearance of stacking
faults temporarilly reduces ice
growth rate (a)

Presence of defects can also increase
the probability for stacking faults to
occur (b-d)

Stochastic nature of these processes
requires study of many individual
MD trajectories!

[1] A. H. Nguyen and V. Molinero,
J. Phys. Chem. B, 119, 9369 (2015)
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(b) Step edge along [210]
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Outlook: Agl (0001) with (5x5) surface reconstruction

Number of
Ag*ions in
the 5x5
surface
supercell
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* In each (5x5) supercell, Ag and | ions have been moved from the top to the bottom of the slab to cancel the dipole
e Based on work on polar ZnO (0001) surfaces: Mora-Franz et al., Chem. Mater. 29, 5306 (2017)
* No nucleation after 250 ns at T = 253 K -> seeded MD simulations or enhanced sampling necessary!



Ssummary

Ice nucleation on Ag-terminated Agl (0001) surfaces with defects

Single vacancy Double vacancy Terrace Pit Step edge [100] Step edge [210]

Similar to perfect surface
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@ Surface H,O structure:

Agl (0001) is an excellent ice nucleating surface, but its dipole makes it unstable in nature - and tricky to simulate
Nucleation rates on surfaces with defects can be explained by simple model where rate on perfect surface is scaled by
effective surface area available for ice nucleation in defect systems, but this model fails to explain atomistic
differences (e.g. step edges along two different crystallographic directions)

Ideal ice growth is slowed down by stochastic appearance of stacking disorder between ice |h and Ic, which is
increased in the presence of some defects

Now considering more realistic surfaces with reconstructions that eliminate, or reduce the dipole!
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